CTF Wiki
  • 简介
  • 如何使用 CTF Wiki
  • introduction
    • CTF 历史
    • CTF 竞赛模式简介
    • CTF 竞赛内容
    • 线下攻防经验小结
    • CGC 超级挑战赛
    • 学习资源
  • misc
    • 杂项简介
    • 取证隐写前置技术
    • 信息搜集技术
    • encode
      • 通信领域常用编码
      • 计算机相关的编码
      • 现实世界中常用的编码
    • picture
      • 图片分析简介
      • JPG
      • PNG
      • GIF
    • audio
      • 音频隐写
    • archive
      • RAR 格式
      • ZIP 格式
    • traffic
      • 流量包分析简介
      • 协议分析概述
        • Wireshark
        • DNS
        • HTTP
        • HTTPS
        • FTP
        • USB
        • WIFI
      • 数据提取
      • PCAP 文件修复
    • disk-memory
      • 磁盘内存分析
      • 题目
    • shellcode
    • other
      • pyc
  • web
    • Web 简介
    • XSS
    • php
      • PHP 代码审计
    • SQL 注入
      • sqlmap绕过脚本
      • 各版本数据库语句备忘
    • CSRF
    • SSRF
  • reverse
    • 软件逆向工程简介
    • identify-encode-encryption
      • 常见加密算法和编码识别
    • language
      • 简介
      • go
        • Golang 逆向入门
      • python
        • Python 逆向入门
      • rust
        • Rust 逆向入门
    • maze
      • 迷宫问题
    • obfuscate
      • 控制流平坦化
      • 花指令
      • movofuscator
      • Self-Modified Code
    • vm
      • 虚拟机分析
    • platform
      • linux
        • Detecting Breakpoints
        • Detecting debugging
        • False Disassembly
        • LD_PRELOAD
      • windows
        • anti-debug
          • CheckRemoteDebuggerPresent
          • 反调试技术例题
          • Heap Flags
          • Interrupt 3
          • IsDebuggerPresent
          • 花指令
          • NtGlobalFlag
          • NtQueryInformationProcess
          • The Heap
          • Thread Local Storage(TLS)
          • ZwSetInformationThread
        • unpack
          • 一步到达 OEP 法
          • ESP 定律法
          • DUMP 及 IAT 重建
          • 最后一次异常法
          • 手动查找 IAT 并使用 ImportREC 重建
          • 内存镜像法
          • 保护壳简介
          • SFX 法
          • 单步跟踪法
          • DLL 文件脱壳
    • tools
      • constraint
        • z3
      • debug
        • gdb
        • ollydbg
        • windbg
        • x64dbg/x32dbg
      • simulate-execution
        • angr
        • Unicorn Engine
      • static-analyze
        • dnspy
        • Ghidra
        • IDA Pro
        • jadx
  • crypto
    • 密码学简介
    • asymmetric
      • 介绍
      • discrete-log
        • 离散对数
        • ECC
        • ElGamal
      • knapsack
        • 背包加密
      • lattice
        • CVP
        • 基本介绍
        • 格基规约算法
        • 格概述
      • rsa
        • RSA 选择明密文攻击
        • RSA 复杂题目
        • Coppersmith 相关攻击
        • 公钥指数相关攻击
        • 模数相关攻击
        • Bleichenbacher's attack
        • RSA 侧信道攻击
        • RSA 介绍
        • d_attacks
          • 私钥 d 相关攻击
          • 扩展维纳攻击
    • attack-summary
      • 简介
      • 比特攻击
      • 中间相遇攻击 - MITM
    • basic
      • 基础数学知识
    • blockcipher
      • AES
      • ARX: Add-Rotate-Xor
      • DES
      • IDEA
      • 块加密
      • Simon and Speck Block Ciphers
      • mode
        • CBC
        • CFB
        • CTR
        • ECB
        • 分组模式
        • OFB
        • Padding Oracle Attack
        • 填充方式
        • PCBC
    • certificate
      • 证书格式
    • classical
      • 古典密码简介
      • 单表代换加密
      • 其它类型加密
      • 多表代换加密
      • 总结
    • hash
      • Hash Attack
      • 综合题目
      • Fowler–Noll–Vo hash function
      • 哈希函数
      • MD5
      • SHA1
    • signature
      • DSA
      • ElGamal
      • 数字签名
      • RSA 数字签名
    • streamcipher
      • 流密码
      • fsr
        • 反馈移位寄存器
        • 线性反馈移位寄存器 - LFSR
        • 非线性反馈移位寄存器
      • lcg
        • 题目
        • 线性同余生成器
      • prng
        • 密码安全伪随机数生成器
        • 伪随机数生成器介绍
        • 题目
      • special
        • RC4
  • pwn
    • MacOS
    • misc-os
    • 概述
      • stackoverflow
        • 执行 Shellcode
        • 栈介绍
        • 栈溢出原理
    • browser
      • Chrome
      • Firefox
      • Safari
    • hardware
      • 简介
        • side-channel
          • prefetch side-channel attack
      • trusted-computing
        • 可信执行环境
    • linux
      • kernel-mode
        • 基础知识
        • Introduction
          • DoS
          • Information Disclosure
          • Introduction
            • Change Others
            • Change Self
        • Introduction
          • Introduction
            • 信息泄漏
            • Misc
          • Introduction
            • Kernel Stack Canary
          • Introduction
            • inner-kernel
              • 内部隔离
            • Introduction
              • KPTI - Kernel Page Table Isolation
              • 用户代码不可执行
              • 用户数据不可访问
          • Introduction
            • FGKASLR
            • KASLR
        • Introduction
          • 编译内核驱动
          • 内核下载与编译
          • Qemu 模拟环境
          • Real Device
        • exploitation
          • heap
            • 内核堆概述
            • buddy
              • Cross-Cache Overflow & Page-level Heap Fengshui
              • Page-level UAF
            • slub
              • freelist 劫持
              • Heap Spray
              • kernel UAF
          • race
            • Double Fetch
            • userfaultfd 的使用
          • rop
            • bypass-smep
            • ret2dir
            • 利用 pt_regs 构造通用内核 ROP
            • ret2usr(已过时)
            • Kernel ROP
          • tricks
            • 在内存中直接搜索 flag
      • user-mode
        • environment
        • fmtstr
          • 检测
          • 例子
          • 利用
          • 原理介绍
        • integeroverflow
          • 整数溢出
        • io-file
          • glibc 2.24下 IO_FILE 的利用
          • 伪造vtable劫持程序流程
          • FSOP
          • FILE结构
        • mitigation
          • Canary
        • race-condition
          • introduction
          • 题目
        • summary
          • 获取地址
          • shell 获取小结
          • 控制程序执行流
        • Type Confusion
        • Uninitialized Memory
        • heap
          • mallocng
          • ptmalloc2
            • Chunk Extend and Overlapping
            • Fastbin Attack
            • 堆概述
            • 堆相关数据结构
            • 堆溢出
            • House Of Einherjar
            • House Of Force
            • House of Lore
            • House of Orange
            • House of Pig
            • House of Rabbit
            • House of Roman
            • 堆利用
            • Large Bin Attack
            • 通过堆进行信息泄漏
            • 堆中的 Off-By-One
            • 堆中的检查
            • tcache makes heap exploitation easy again
            • Unlink
            • Unsorted Bin Attack
            • Use After Free
            • implementation
              • 基础操作
              • 释放内存块
              • 堆初始化
              • malloc_state 相关函数
              • 申请内存块
              • 测试支持
              • 深入理解堆的实现
              • tcache
        • stackoverflow
          • arm
            • 环境搭建
            • Arm ROP
          • mips
            • mips - ROP
          • RISC-V
          • x86
            • 基本 ROP
            • 花式栈溢出技巧
            • 中级ROP
            • 栈介绍
            • 栈溢出原理
            • advanced-rop
              • 高级 ROP
              • ret2dlresolve
              • ret2VDSO
              • SROP
    • sandbox
      • Chroot
      • Docker
      • Namespace
      • python
        • Python 沙盒
      • seccomp
        • C 沙盒逃逸
      • Shell Sandbox
    • virtualization
      • basic-knowledge
        • 虚拟化技术简介
        • CPU 虚拟化
        • IO 虚拟化
        • 内存虚拟化
      • parallels
        • Parallels
      • VirtualBox
      • VMWare
      • qemu
        • basic-knowledge
          • QEMU 设备模拟
          • QEMU 内存管理
        • environment
          • 编写 QEMU 模拟设备
          • QEMU 下载与编译
        • exploitation
          • QEMU 逃逸入门
          • 越界读写
  • Android 安全
    • basic_develop
      • Android 开发基础
    • Android 应用运行机制简述
      • Android 中 Java 层的运行机制
        • dex
          • DEX文件
          • ODEX文件
        • smali
          • Smali
      • native_layer
        • so 介绍
    • basic_reverse
      • Android 关键代码定位
      • Android 逆向基本介绍
      • dynamic
        • Android 动态调试
        • IDA 动态调试原生层程序
        • IDA 动态调试 smali 代码
      • static
        • 静态分析综合题目
        • 静态分析 java 层例子
        • 静态分析原生层程序
  • blockchain
    • Blockchain Security Challenges
    • Blockchain Security Overview
    • ethereum
      • Ethereum Basics
      • Ethereum Overview
      • Ethereum Opcodes
      • 学习资源
      • Smart Contract Reverse
      • Function Selector and Argument Encoding
      • Ethereum Storage
      • attacks
        • Airdrop Hunting
        • Arbitrary Writing
        • CREATE2
        • Delegatecall
        • Introduction
        • Jump Oriented Programming
        • Integer Overflow and Underflow
        • Randomness
        • Re-Entrancy
        • Short Address Attack
        • Uninitialized Storage Pointer
    • publicblockchain
      • Public Blockchain Security Overview
      • Blockchain Weaknesses
  • assembly
    • ARM
    • MIPS
    • x86_x64
  • executable
    • elf
      • 程序加载
      • 程序执行流程
      • linking
        • 程序链接
        • Symbol Reslove
      • structure
        • ELF 文件
        • Code Section
        • Data Related Sections
        • Dynamic Sections
        • Misc Sections
        • Sections
        • String Sections
        • .symtab: Symbol Table
    • pe
      • PE 文件格式
      • 导出表
      • 导入表
      • 基址重定位表
  • ics
    • ICS_CTF 竞赛
    • ICS_CTF 发现
    • ICS_CTF 利用
    • ICS_CTF 学习资源
  • contribute
    • 贡献之前
    • 基本贡献方式
    • 贡献文档要求
    • 翻译
  • write up
    • 浙江工业大学CTF赛事
      • 2023第四届“安恒杯”CTF新生赛题解
Powered by GitBook
On this page
  1. crypto
  2. streamcipher
  3. lcg

题目

2016 Google CTF woodman

程序的大概意思就是一个猜数游戏,如果连续猜中若干次,就算会拿到 flag,背后的生成相应数的核心代码如下

class SecurePrng(object):
    def __init__(self):
        # generate seed with 64 bits of entropy
        self.p = 4646704883L
        self.x = random.randint(0, self.p)
        self.y = random.randint(0, self.p)

    def next(self):
        self.x = (2 * self.x + 3) % self.p
        self.y = (3 * self.y + 9) % self.p
        return (self.x ^ self.y)

这里我们显然,我们猜出前两轮还是比较容易的,毕竟概率也有 0.25。这里当我们猜出前两轮后,使用 Z3 来求解出初始的 x 和 y,那么我们就可以顺利的猜出剩下的值了。

具体的脚本如下,然而 Z3 在解决这样的问题时似乎是有问题的。。。

这里我们考虑另外一种方法,依次从低比特位枚举到高比特位获取 x 的值,之所以能够这样做,是依赖于这样的观察

  • a + b = c,c 的第 i 比特位的值只受 a 和 b 该比特位以及更低比特位的影响。因为第 i 比特位进行运算时,只有可能收到低比特位的进位数值。

  • a - b = c,c 的第 i 比特位的值只受 a 和 b 该比特位以及更低比特位的影响。因为第 i 比特位进行运算时,只有可能向低比特位的借位。

  • a * b = c,c 的第 i 比特位的值只受 a 和 b 该比特位以及更低比特位的影响。因为这可以视作多次加法。

  • a % b = c,c 的第 i 比特位的值只受 a 和 b 该比特位以及更低比特位的影响。因为这可视为多次进行减法。

  • a ^ b = c,c 的第 i 比特位的值只受 a 和 b 该比特位的影响。这一点是显而易见的。

注:个人感觉这个技巧非常有用。

此外,我们不难得知 p 的比特位为 33 比特位。具体利用思路如下

  1. 首先获取两次猜到的值,这个概率有 0.25。

  2. 依次从低比特位到高比特位依次枚举第一次迭代后的 x 的相应比特位。

  3. 根据自己枚举的值分别计算出第二次的值,只有当对应比特位正确,可以将其加入候选正确值。需要注意的是,这里由于取模,所以我们需要枚举到底减了多少次。

  4. 此外,在最终判断时,仍然需要确保对应的值满足一定要求,因为之前对减了多少次进行了枚举。

具体利用代码如下

import os
import random
from itertools import product


class SecurePrng(object):
    def __init__(self, x=-1, y=-1):
        # generate seed with 64 bits of entropy
        self.p = 4646704883L  # 33bit
        if x == -1:
            self.x = random.randint(0, self.p)
        else:
            self.x = x
        if y == -1:
            self.y = random.randint(0, self.p)
        else:
            self.y = y

    def next(self):
        self.x = (2 * self.x + 3) % self.p
        self.y = (3 * self.y + 9) % self.p
        return (self.x ^ self.y)


def getbiti(num, idx):
    return bin(num)[-idx - 1:]


def main():
    sp = SecurePrng()
    targetx = sp.x
    targety = sp.y
    print "we would like to get x ", targetx
    print "we would like to get y ", targety

    # suppose we have already guess two number
    guess1 = sp.next()
    guess2 = sp.next()

    p = 4646704883

    # newx = tmpx*2+3-kx*p
    for kx, ky in product(range(3), range(4)):
        candidate = [[0]]
        # only 33 bit
        for i in range(33):
            #print 'idx ', i
            new_candidate = []
            for old, bit in product(candidate, range(2)):
                #print old, bit
                oldx = old[0]
                #oldy = old[1]
                tmpx = oldx | ((bit & 1) << i)
                #tmpy = oldy | ((bit / 2) << i)
                tmpy = tmpx ^ guess1
                newx = tmpx * 2 + 3 - kx * p + (1 << 40)
                newy = tmpy * 3 + 9 - ky * p + (1 << 40)
                tmp1 = newx ^ newy
                #print "tmpx:    ", bin(tmpx)
                #print "targetx: ", bin(targetx)
                #print "calculate:     ", bin(tmp1 + (1 << 40))
                #print "target guess2: ", bin(guess1 + (1 << 40))
                if getbiti(guess2 + (1 << 40), i) == getbiti(
                        tmp1 + (1 << 40), i):
                    if [tmpx] not in new_candidate:
                        #print "got one"
                        #print bin(tmpx)
                        #print bin(targetx)
                        #print bin(tmpy)
                        new_candidate.append([tmpx])
            candidate = new_candidate
            #print len(candidate)
            #print candidate
        print "candidate x for kx: ", kx, " ky ", ky
        for item in candidate:
            tmpx = candidate[0][0]
            tmpy = tmpx ^ guess1
            if tmpx >= p or tmpx >= p:
                continue
            mysp = SecurePrng(tmpx, tmpy)
            tmp1 = mysp.next()
            if tmp1 != guess2:
                continue
            print tmpx, tmpy
            print(targetx * 2 + 3) % p, (targety * 3 + 9) % p


if __name__ == "__main__":
    main()
PreviouslcgNext线性同余生成器

Last updated 1 year ago