CTF Wiki
  • 简介
  • 如何使用 CTF Wiki
  • introduction
    • CTF 历史
    • CTF 竞赛模式简介
    • CTF 竞赛内容
    • 线下攻防经验小结
    • CGC 超级挑战赛
    • 学习资源
  • misc
    • 杂项简介
    • 取证隐写前置技术
    • 信息搜集技术
    • encode
      • 通信领域常用编码
      • 计算机相关的编码
      • 现实世界中常用的编码
    • picture
      • 图片分析简介
      • JPG
      • PNG
      • GIF
    • audio
      • 音频隐写
    • archive
      • RAR 格式
      • ZIP 格式
    • traffic
      • 流量包分析简介
      • 协议分析概述
        • Wireshark
        • DNS
        • HTTP
        • HTTPS
        • FTP
        • USB
        • WIFI
      • 数据提取
      • PCAP 文件修复
    • disk-memory
      • 磁盘内存分析
      • 题目
    • shellcode
    • other
      • pyc
  • web
    • Web 简介
    • XSS
    • php
      • PHP 代码审计
    • SQL 注入
      • sqlmap绕过脚本
      • 各版本数据库语句备忘
    • CSRF
    • SSRF
  • reverse
    • 软件逆向工程简介
    • identify-encode-encryption
      • 常见加密算法和编码识别
    • language
      • 简介
      • go
        • Golang 逆向入门
      • python
        • Python 逆向入门
      • rust
        • Rust 逆向入门
    • maze
      • 迷宫问题
    • obfuscate
      • 控制流平坦化
      • 花指令
      • movofuscator
      • Self-Modified Code
    • vm
      • 虚拟机分析
    • platform
      • linux
        • Detecting Breakpoints
        • Detecting debugging
        • False Disassembly
        • LD_PRELOAD
      • windows
        • anti-debug
          • CheckRemoteDebuggerPresent
          • 反调试技术例题
          • Heap Flags
          • Interrupt 3
          • IsDebuggerPresent
          • 花指令
          • NtGlobalFlag
          • NtQueryInformationProcess
          • The Heap
          • Thread Local Storage(TLS)
          • ZwSetInformationThread
        • unpack
          • 一步到达 OEP 法
          • ESP 定律法
          • DUMP 及 IAT 重建
          • 最后一次异常法
          • 手动查找 IAT 并使用 ImportREC 重建
          • 内存镜像法
          • 保护壳简介
          • SFX 法
          • 单步跟踪法
          • DLL 文件脱壳
    • tools
      • constraint
        • z3
      • debug
        • gdb
        • ollydbg
        • windbg
        • x64dbg/x32dbg
      • simulate-execution
        • angr
        • Unicorn Engine
      • static-analyze
        • dnspy
        • Ghidra
        • IDA Pro
        • jadx
  • crypto
    • 密码学简介
    • asymmetric
      • 介绍
      • discrete-log
        • 离散对数
        • ECC
        • ElGamal
      • knapsack
        • 背包加密
      • lattice
        • CVP
        • 基本介绍
        • 格基规约算法
        • 格概述
      • rsa
        • RSA 选择明密文攻击
        • RSA 复杂题目
        • Coppersmith 相关攻击
        • 公钥指数相关攻击
        • 模数相关攻击
        • Bleichenbacher's attack
        • RSA 侧信道攻击
        • RSA 介绍
        • d_attacks
          • 私钥 d 相关攻击
          • 扩展维纳攻击
    • attack-summary
      • 简介
      • 比特攻击
      • 中间相遇攻击 - MITM
    • basic
      • 基础数学知识
    • blockcipher
      • AES
      • ARX: Add-Rotate-Xor
      • DES
      • IDEA
      • 块加密
      • Simon and Speck Block Ciphers
      • mode
        • CBC
        • CFB
        • CTR
        • ECB
        • 分组模式
        • OFB
        • Padding Oracle Attack
        • 填充方式
        • PCBC
    • certificate
      • 证书格式
    • classical
      • 古典密码简介
      • 单表代换加密
      • 其它类型加密
      • 多表代换加密
      • 总结
    • hash
      • Hash Attack
      • 综合题目
      • Fowler–Noll–Vo hash function
      • 哈希函数
      • MD5
      • SHA1
    • signature
      • DSA
      • ElGamal
      • 数字签名
      • RSA 数字签名
    • streamcipher
      • 流密码
      • fsr
        • 反馈移位寄存器
        • 线性反馈移位寄存器 - LFSR
        • 非线性反馈移位寄存器
      • lcg
        • 题目
        • 线性同余生成器
      • prng
        • 密码安全伪随机数生成器
        • 伪随机数生成器介绍
        • 题目
      • special
        • RC4
  • pwn
    • MacOS
    • misc-os
    • 概述
      • stackoverflow
        • 执行 Shellcode
        • 栈介绍
        • 栈溢出原理
    • browser
      • Chrome
      • Firefox
      • Safari
    • hardware
      • 简介
        • side-channel
          • prefetch side-channel attack
      • trusted-computing
        • 可信执行环境
    • linux
      • kernel-mode
        • 基础知识
        • Introduction
          • DoS
          • Information Disclosure
          • Introduction
            • Change Others
            • Change Self
        • Introduction
          • Introduction
            • 信息泄漏
            • Misc
          • Introduction
            • Kernel Stack Canary
          • Introduction
            • inner-kernel
              • 内部隔离
            • Introduction
              • KPTI - Kernel Page Table Isolation
              • 用户代码不可执行
              • 用户数据不可访问
          • Introduction
            • FGKASLR
            • KASLR
        • Introduction
          • 编译内核驱动
          • 内核下载与编译
          • Qemu 模拟环境
          • Real Device
        • exploitation
          • heap
            • 内核堆概述
            • buddy
              • Cross-Cache Overflow & Page-level Heap Fengshui
              • Page-level UAF
            • slub
              • freelist 劫持
              • Heap Spray
              • kernel UAF
          • race
            • Double Fetch
            • userfaultfd 的使用
          • rop
            • bypass-smep
            • ret2dir
            • 利用 pt_regs 构造通用内核 ROP
            • ret2usr(已过时)
            • Kernel ROP
          • tricks
            • 在内存中直接搜索 flag
      • user-mode
        • environment
        • fmtstr
          • 检测
          • 例子
          • 利用
          • 原理介绍
        • integeroverflow
          • 整数溢出
        • io-file
          • glibc 2.24下 IO_FILE 的利用
          • 伪造vtable劫持程序流程
          • FSOP
          • FILE结构
        • mitigation
          • Canary
        • race-condition
          • introduction
          • 题目
        • summary
          • 获取地址
          • shell 获取小结
          • 控制程序执行流
        • Type Confusion
        • Uninitialized Memory
        • heap
          • mallocng
          • ptmalloc2
            • Chunk Extend and Overlapping
            • Fastbin Attack
            • 堆概述
            • 堆相关数据结构
            • 堆溢出
            • House Of Einherjar
            • House Of Force
            • House of Lore
            • House of Orange
            • House of Pig
            • House of Rabbit
            • House of Roman
            • 堆利用
            • Large Bin Attack
            • 通过堆进行信息泄漏
            • 堆中的 Off-By-One
            • 堆中的检查
            • tcache makes heap exploitation easy again
            • Unlink
            • Unsorted Bin Attack
            • Use After Free
            • implementation
              • 基础操作
              • 释放内存块
              • 堆初始化
              • malloc_state 相关函数
              • 申请内存块
              • 测试支持
              • 深入理解堆的实现
              • tcache
        • stackoverflow
          • arm
            • 环境搭建
            • Arm ROP
          • mips
            • mips - ROP
          • RISC-V
          • x86
            • 基本 ROP
            • 花式栈溢出技巧
            • 中级ROP
            • 栈介绍
            • 栈溢出原理
            • advanced-rop
              • 高级 ROP
              • ret2dlresolve
              • ret2VDSO
              • SROP
    • sandbox
      • Chroot
      • Docker
      • Namespace
      • python
        • Python 沙盒
      • seccomp
        • C 沙盒逃逸
      • Shell Sandbox
    • virtualization
      • basic-knowledge
        • 虚拟化技术简介
        • CPU 虚拟化
        • IO 虚拟化
        • 内存虚拟化
      • parallels
        • Parallels
      • VirtualBox
      • VMWare
      • qemu
        • basic-knowledge
          • QEMU 设备模拟
          • QEMU 内存管理
        • environment
          • 编写 QEMU 模拟设备
          • QEMU 下载与编译
        • exploitation
          • QEMU 逃逸入门
          • 越界读写
  • Android 安全
    • basic_develop
      • Android 开发基础
    • Android 应用运行机制简述
      • Android 中 Java 层的运行机制
        • dex
          • DEX文件
          • ODEX文件
        • smali
          • Smali
      • native_layer
        • so 介绍
    • basic_reverse
      • Android 关键代码定位
      • Android 逆向基本介绍
      • dynamic
        • Android 动态调试
        • IDA 动态调试原生层程序
        • IDA 动态调试 smali 代码
      • static
        • 静态分析综合题目
        • 静态分析 java 层例子
        • 静态分析原生层程序
  • blockchain
    • Blockchain Security Challenges
    • Blockchain Security Overview
    • ethereum
      • Ethereum Basics
      • Ethereum Overview
      • Ethereum Opcodes
      • 学习资源
      • Smart Contract Reverse
      • Function Selector and Argument Encoding
      • Ethereum Storage
      • attacks
        • Airdrop Hunting
        • Arbitrary Writing
        • CREATE2
        • Delegatecall
        • Introduction
        • Jump Oriented Programming
        • Integer Overflow and Underflow
        • Randomness
        • Re-Entrancy
        • Short Address Attack
        • Uninitialized Storage Pointer
    • publicblockchain
      • Public Blockchain Security Overview
      • Blockchain Weaknesses
  • assembly
    • ARM
    • MIPS
    • x86_x64
  • executable
    • elf
      • 程序加载
      • 程序执行流程
      • linking
        • 程序链接
        • Symbol Reslove
      • structure
        • ELF 文件
        • Code Section
        • Data Related Sections
        • Dynamic Sections
        • Misc Sections
        • Sections
        • String Sections
        • .symtab: Symbol Table
    • pe
      • PE 文件格式
      • 导出表
      • 导入表
      • 基址重定位表
  • ics
    • ICS_CTF 竞赛
    • ICS_CTF 发现
    • ICS_CTF 利用
    • ICS_CTF 学习资源
  • contribute
    • 贡献之前
    • 基本贡献方式
    • 贡献文档要求
    • 翻译
  • write up
    • 浙江工业大学CTF赛事
      • 2023第四届“安恒杯”CTF新生赛题解
Powered by GitBook
On this page
  • Pad with bytes all of the same value as the number of padding bytes (PKCS5 padding)
  • Pad with 0x80 followed by zero bytes (OneAndZeroes Padding)
  • Pad with zeroes except make the last byte equal to the number of padding bytes
  • Pad with zero (null) characters
  • Pad with spaces
  • 2018 上海市大学生网络安全大赛 aessss
  • 分析
  • 利用
  1. crypto
  2. blockcipher
  3. mode

填充方式

PreviousPadding Oracle AttackNextPCBC

Last updated 1 year ago

正如我们之前所说,在分组加密中,明文的长度往往并不满足要求,需要进行 padding,而如何 padding 目前也已经有了不少的规定。

常见的 如下。需要注意的是,即使消息的长度是块大小的整数倍,仍然需要填充。

一般来说,如果在解密之后发现 Padding 不正确,则往往会抛出异常。我们也因此可以知道 Paddig 是否正确。

Pad with bytes all of the same value as the number of padding bytes (PKCS5 padding)

举例子如下

DES INPUT BLOCK  = f  o  r  _  _  _  _  _
(IN HEX)           66 6F 72 05 05 05 05 05
KEY              = 01 23 45 67 89 AB CD EF
DES OUTPUT BLOCK = FD 29 85 C9 E8 DF 41 40

Pad with 0x80 followed by zero bytes (OneAndZeroes Padding)

举例子如下

DES INPUT BLOCK  = f  o  r  _  _  _  _  _
(IN HEX)           66 6F 72 80 00 00 00 00
KEY              = 01 23 45 67 89 AB CD EF
DES OUTPUT BLOCK = BE 62 5D 9F F3 C6 C8 40

这里其实就是和 md5 和 sha1 的 padding 差不多。

Pad with zeroes except make the last byte equal to the number of padding bytes

举例子如下

DES INPUT BLOCK  = f  o  r  _  _  _  _  _
(IN HEX)           66 6f 72 00 00 00 00 05
KEY              = 01 23 45 67 89 AB CD EF
DES OUTPUT BLOCK = 91 19 2C 64 B5 5C 5D B8

Pad with zero (null) characters

举例子如下

DES INPUT BLOCK  = f  o  r  _  _  _  _  _
(IN HEX)           66 6f 72 00 00 00 00 00
KEY              = 01 23 45 67 89 AB CD EF
DES OUTPUT BLOCK = 9E 14 FB 96 C5 FE EB 75

Pad with spaces

举例子如下

DES INPUT BLOCK  = f  o  r  _  _  _  _  _
(IN HEX)           66 6f 72 20 20 20 20 20
KEY              = 01 23 45 67 89 AB CD EF
DES OUTPUT BLOCK = E3 FF EC E5 21 1F 35 25

2018 上海市大学生网络安全大赛 aessss

有时候可以针对一些使用不当的 Padding 进行攻击。这里以 2018 上海市大学生网络安全大赛的一道题目为例:

题目脚本如下:

import random
import sys
import string
from hashlib import sha256
import SocketServer
from Crypto.Cipher import AES
from secret import FLAG, IV, KEY


class Task(SocketServer.BaseRequestHandler):
    def proof_of_work(self):
        proof = ''.join(
            [random.choice(string.ascii_letters+string.digits) for _ in xrange(20)])
        # print proof
        digest = sha256(proof).hexdigest()
        self.request.send("sha256(XXXX+%s) == %s\n" % (proof[4:], digest))
        self.request.send('Give me XXXX:')
        x = self.request.recv(10)
        x = x.strip()
        if len(x) != 4 or sha256(x+proof[4:]).hexdigest() != digest:
            return False
        return True

    def pad(self, s):
        s += (256 - len(s)) * chr(256 - len(s))
        ret = ['\x00' for _ in range(256)]
        for index, pos in enumerate(self.s_box):
            ret[pos] = s[index]
        return ''.join(ret)

    def unpad(self, s):
        ret = ['\x00' for _ in range(256)]
        for index, pos in enumerate(self.invs_box):
            ret[pos] = s[index]
        return ''.join(ret[0:-ord(ret[-1])])

    s_box = [
        0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
        0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
        0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
        0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
        0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
        0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
        0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
        0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
        0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
        0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
        0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
        0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
        0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
        0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
        0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
        0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
    ]

    invs_box = [
        0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
        0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
        0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
        0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
        0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
        0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
        0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
        0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
        0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
        0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
        0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
        0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
        0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
        0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
        0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
        0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
    ]

    def encrypt(self, msg):
        cipher = AES.new(KEY, AES.MODE_CBC, IV)
        return cipher.encrypt(msg).encode('hex')

    def handle(self):
        if not self.proof_of_work():
            return
        self.request.settimeout(15)
        req = self.request
        flag_len = len(FLAG)
        assert(flag_len == 33)
        self.flag = self.pad(FLAG)
        assert(len(self.flag) == 256)

        while True:
            req.sendall(
                'Welcome to AES(WXH) encrypt system.\n1. get encrypted flag.\n2. pad flag.\n3.Do some encrypt.\nYour choice:')
            cmd = req.recv(2).strip()
            try:
                cmd = int(cmd)
            except ValueError:
                cmd = 0
            if cmd == 1:
                enc = self.encrypt(self.flag)
                req.sendall('Here is the encrypted flag: 0x%s\n' % enc)
            elif cmd == 2:
                req.sendall('Pad me something:')
                self.flag = self.unpad(self.flag)[
                    :flag_len] + req.recv(1024).strip()
                assert(len(self.flag) <= 256)
                self.flag = self.pad(self.flag)
                req.sendall('Done.\n')
            elif cmd == 3:
                req.sendall('What do you want to encrypt:')
                msg = self.pad(req.recv(1024).strip())
                assert(len(msg) <= 256)
                enc = self.encrypt(msg)
                req.sendall('Here is the encrypted message: 0x%s\n' % enc)
            else:
                req.sendall('Do not lose heart~ !% Once WXH AK IOI 2019 can Solved! WXH is the first in the tianxia!')
                req.close()
                return


class ThreadedServer(SocketServer.ThreadingMixIn, SocketServer.TCPServer):
    pass


if __name__ == "__main__":
    HOST, PORT = '0.0.0.0', 23333
    print 'Run in port:23333'
    server = ThreadedServer((HOST, PORT), Task)
    server.allow_reuse_address = True
    server.serve_forever()

分析

这个题目问题出在 padding 的时候,由于不足 256 位要进行 padding,padding 的字节也就是缺的字节数,但是如果明文够 256 字节,那么按照代码逻辑就不进行 padding:

def pad(self, s):
        s += (256 - len(s)) * chr(256 - len(s))
        ret = ['\x00' for _ in range(256)]
        for index, pos in enumerate(self.s_box):
            ret[pos] = s[index]
        return ''.join(ret)

最大的问题出在 unpad 上,unpad 没有进行检查,仅仅通过最后一个字节来判断填充的字节数。

 def unpad(self, s):
        ret = ['\x00' for _ in range(256)]
        for index, pos in enumerate(self.invs_box):
            ret[pos] = s[index]
        return ''.join(ret[0:-ord(ret[-1])])

我们可以通过篡改最后一个字节来控制去掉的 padding 字节数。

利用

  1. 选择 choice2,追加 256-33 =223字节,使当前 flag 不需要填充,追加的最后一个字节设置成 chr(256-32)。

  2. 服务器对 flag 追加我们的信息,并进行 s 盒替换,结果赋给类中的 flag 变量。

  3. 我们再次选择 choice2,这里由于我们需要追加,服务器会将类中的 flag 变量取出进行逆 S 盒替换和 unpad,这样按照这个 unpad 算法会把后面 224 字节的全部当成 padding去掉,明文剩下了真正 flag 的前32位。

  4. 我们此时输入一个字符 i,那么此时加密的对象就是 flag[:32]+i。

  5. 选择 choice1 对当前 flag 加密,控制 i 进行爆破,如果得到的密文和最初的 flag 加密的密文一样,就得到了 flag 的最后一个字节。

  6. 逐字节爆破,直至获取全部的 flag。

exp 如下:

# -*- coding: utf-8 -*-
from hashlib import sha256
import socket
import string
import itertools
HOST='106.75.13.64'
PORT=54321
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((HOST, PORT))
def brute_force(pad, shavalue):
    for str in itertools.product(string.ascii_letters + string.digits, repeat=4):
        str=''.join(str)
        if sha256(str + pad).hexdigest() == shavalue:
            print str
            return str
def choice1():
    sock.send("1\n")
    result=sock.recv(1024).strip()[30:]
    sock.recv(1024).strip()
    return result
def choice2(pad):
    sock.send("2\n")
    sock.recv(1024).strip()
    sock.send(pad+"\n")
    sock.recv(1024).strip()
    sock.recv(1024).strip()
def choice3(str):
    sock.send("3\n")
    sock.recv(1024).strip()
    sock.send(str+"\n")
    result=sock.recv(1024).strip()[33:]
    sock.recv(1024).strip()
    return result
content = sock.recv(1024).strip()
pad=content[12:12+16]
hash=content[33:33+64]
sock.recv(1024).strip()
sock.send(str(brute_force(pad,hash))+"\n")
print sock.recv(1024).strip()
flag_enc=choice1()
flag=""
for i in range(33):
    a = ''.join(['a' for _ in range(223)])
    a = a[:-1] + chr(224+i)
    for c in string.printable:
        print c+flag
        choice2(a)
        choice2(c+flag)
        if choice1() == flag_enc:
            flag=c+flag
            print "success:",flag
            break

flag{H4ve_fun_w1th_p4d_and_unp4d}

填充规则