CTF Wiki
  • 简介
  • 如何使用 CTF Wiki
  • introduction
    • CTF 历史
    • CTF 竞赛模式简介
    • CTF 竞赛内容
    • 线下攻防经验小结
    • CGC 超级挑战赛
    • 学习资源
  • misc
    • 杂项简介
    • 取证隐写前置技术
    • 信息搜集技术
    • encode
      • 通信领域常用编码
      • 计算机相关的编码
      • 现实世界中常用的编码
    • picture
      • 图片分析简介
      • JPG
      • PNG
      • GIF
    • audio
      • 音频隐写
    • archive
      • RAR 格式
      • ZIP 格式
    • traffic
      • 流量包分析简介
      • 协议分析概述
        • Wireshark
        • DNS
        • HTTP
        • HTTPS
        • FTP
        • USB
        • WIFI
      • 数据提取
      • PCAP 文件修复
    • disk-memory
      • 磁盘内存分析
      • 题目
    • shellcode
    • other
      • pyc
  • web
    • Web 简介
    • XSS
    • php
      • PHP 代码审计
    • SQL 注入
      • sqlmap绕过脚本
      • 各版本数据库语句备忘
    • CSRF
    • SSRF
  • reverse
    • 软件逆向工程简介
    • identify-encode-encryption
      • 常见加密算法和编码识别
    • language
      • 简介
      • go
        • Golang 逆向入门
      • python
        • Python 逆向入门
      • rust
        • Rust 逆向入门
    • maze
      • 迷宫问题
    • obfuscate
      • 控制流平坦化
      • 花指令
      • movofuscator
      • Self-Modified Code
    • vm
      • 虚拟机分析
    • platform
      • linux
        • Detecting Breakpoints
        • Detecting debugging
        • False Disassembly
        • LD_PRELOAD
      • windows
        • anti-debug
          • CheckRemoteDebuggerPresent
          • 反调试技术例题
          • Heap Flags
          • Interrupt 3
          • IsDebuggerPresent
          • 花指令
          • NtGlobalFlag
          • NtQueryInformationProcess
          • The Heap
          • Thread Local Storage(TLS)
          • ZwSetInformationThread
        • unpack
          • 一步到达 OEP 法
          • ESP 定律法
          • DUMP 及 IAT 重建
          • 最后一次异常法
          • 手动查找 IAT 并使用 ImportREC 重建
          • 内存镜像法
          • 保护壳简介
          • SFX 法
          • 单步跟踪法
          • DLL 文件脱壳
    • tools
      • constraint
        • z3
      • debug
        • gdb
        • ollydbg
        • windbg
        • x64dbg/x32dbg
      • simulate-execution
        • angr
        • Unicorn Engine
      • static-analyze
        • dnspy
        • Ghidra
        • IDA Pro
        • jadx
  • crypto
    • 密码学简介
    • asymmetric
      • 介绍
      • discrete-log
        • 离散对数
        • ECC
        • ElGamal
      • knapsack
        • 背包加密
      • lattice
        • CVP
        • 基本介绍
        • 格基规约算法
        • 格概述
      • rsa
        • RSA 选择明密文攻击
        • RSA 复杂题目
        • Coppersmith 相关攻击
        • 公钥指数相关攻击
        • 模数相关攻击
        • Bleichenbacher's attack
        • RSA 侧信道攻击
        • RSA 介绍
        • d_attacks
          • 私钥 d 相关攻击
          • 扩展维纳攻击
    • attack-summary
      • 简介
      • 比特攻击
      • 中间相遇攻击 - MITM
    • basic
      • 基础数学知识
    • blockcipher
      • AES
      • ARX: Add-Rotate-Xor
      • DES
      • IDEA
      • 块加密
      • Simon and Speck Block Ciphers
      • mode
        • CBC
        • CFB
        • CTR
        • ECB
        • 分组模式
        • OFB
        • Padding Oracle Attack
        • 填充方式
        • PCBC
    • certificate
      • 证书格式
    • classical
      • 古典密码简介
      • 单表代换加密
      • 其它类型加密
      • 多表代换加密
      • 总结
    • hash
      • Hash Attack
      • 综合题目
      • Fowler–Noll–Vo hash function
      • 哈希函数
      • MD5
      • SHA1
    • signature
      • DSA
      • ElGamal
      • 数字签名
      • RSA 数字签名
    • streamcipher
      • 流密码
      • fsr
        • 反馈移位寄存器
        • 线性反馈移位寄存器 - LFSR
        • 非线性反馈移位寄存器
      • lcg
        • 题目
        • 线性同余生成器
      • prng
        • 密码安全伪随机数生成器
        • 伪随机数生成器介绍
        • 题目
      • special
        • RC4
  • pwn
    • MacOS
    • misc-os
    • 概述
      • stackoverflow
        • 执行 Shellcode
        • 栈介绍
        • 栈溢出原理
    • browser
      • Chrome
      • Firefox
      • Safari
    • hardware
      • 简介
        • side-channel
          • prefetch side-channel attack
      • trusted-computing
        • 可信执行环境
    • linux
      • kernel-mode
        • 基础知识
        • Introduction
          • DoS
          • Information Disclosure
          • Introduction
            • Change Others
            • Change Self
        • Introduction
          • Introduction
            • 信息泄漏
            • Misc
          • Introduction
            • Kernel Stack Canary
          • Introduction
            • inner-kernel
              • 内部隔离
            • Introduction
              • KPTI - Kernel Page Table Isolation
              • 用户代码不可执行
              • 用户数据不可访问
          • Introduction
            • FGKASLR
            • KASLR
        • Introduction
          • 编译内核驱动
          • 内核下载与编译
          • Qemu 模拟环境
          • Real Device
        • exploitation
          • heap
            • 内核堆概述
            • buddy
              • Cross-Cache Overflow & Page-level Heap Fengshui
              • Page-level UAF
            • slub
              • freelist 劫持
              • Heap Spray
              • kernel UAF
          • race
            • Double Fetch
            • userfaultfd 的使用
          • rop
            • bypass-smep
            • ret2dir
            • 利用 pt_regs 构造通用内核 ROP
            • ret2usr(已过时)
            • Kernel ROP
          • tricks
            • 在内存中直接搜索 flag
      • user-mode
        • environment
        • fmtstr
          • 检测
          • 例子
          • 利用
          • 原理介绍
        • integeroverflow
          • 整数溢出
        • io-file
          • glibc 2.24下 IO_FILE 的利用
          • 伪造vtable劫持程序流程
          • FSOP
          • FILE结构
        • mitigation
          • Canary
        • race-condition
          • introduction
          • 题目
        • summary
          • 获取地址
          • shell 获取小结
          • 控制程序执行流
        • Type Confusion
        • Uninitialized Memory
        • heap
          • mallocng
          • ptmalloc2
            • Chunk Extend and Overlapping
            • Fastbin Attack
            • 堆概述
            • 堆相关数据结构
            • 堆溢出
            • House Of Einherjar
            • House Of Force
            • House of Lore
            • House of Orange
            • House of Pig
            • House of Rabbit
            • House of Roman
            • 堆利用
            • Large Bin Attack
            • 通过堆进行信息泄漏
            • 堆中的 Off-By-One
            • 堆中的检查
            • tcache makes heap exploitation easy again
            • Unlink
            • Unsorted Bin Attack
            • Use After Free
            • implementation
              • 基础操作
              • 释放内存块
              • 堆初始化
              • malloc_state 相关函数
              • 申请内存块
              • 测试支持
              • 深入理解堆的实现
              • tcache
        • stackoverflow
          • arm
            • 环境搭建
            • Arm ROP
          • mips
            • mips - ROP
          • RISC-V
          • x86
            • 基本 ROP
            • 花式栈溢出技巧
            • 中级ROP
            • 栈介绍
            • 栈溢出原理
            • advanced-rop
              • 高级 ROP
              • ret2dlresolve
              • ret2VDSO
              • SROP
    • sandbox
      • Chroot
      • Docker
      • Namespace
      • python
        • Python 沙盒
      • seccomp
        • C 沙盒逃逸
      • Shell Sandbox
    • virtualization
      • basic-knowledge
        • 虚拟化技术简介
        • CPU 虚拟化
        • IO 虚拟化
        • 内存虚拟化
      • parallels
        • Parallels
      • VirtualBox
      • VMWare
      • qemu
        • basic-knowledge
          • QEMU 设备模拟
          • QEMU 内存管理
        • environment
          • 编写 QEMU 模拟设备
          • QEMU 下载与编译
        • exploitation
          • QEMU 逃逸入门
          • 越界读写
  • Android 安全
    • basic_develop
      • Android 开发基础
    • Android 应用运行机制简述
      • Android 中 Java 层的运行机制
        • dex
          • DEX文件
          • ODEX文件
        • smali
          • Smali
      • native_layer
        • so 介绍
    • basic_reverse
      • Android 关键代码定位
      • Android 逆向基本介绍
      • dynamic
        • Android 动态调试
        • IDA 动态调试原生层程序
        • IDA 动态调试 smali 代码
      • static
        • 静态分析综合题目
        • 静态分析 java 层例子
        • 静态分析原生层程序
  • blockchain
    • Blockchain Security Challenges
    • Blockchain Security Overview
    • ethereum
      • Ethereum Basics
      • Ethereum Overview
      • Ethereum Opcodes
      • 学习资源
      • Smart Contract Reverse
      • Function Selector and Argument Encoding
      • Ethereum Storage
      • attacks
        • Airdrop Hunting
        • Arbitrary Writing
        • CREATE2
        • Delegatecall
        • Introduction
        • Jump Oriented Programming
        • Integer Overflow and Underflow
        • Randomness
        • Re-Entrancy
        • Short Address Attack
        • Uninitialized Storage Pointer
    • publicblockchain
      • Public Blockchain Security Overview
      • Blockchain Weaknesses
  • assembly
    • ARM
    • MIPS
    • x86_x64
  • executable
    • elf
      • 程序加载
      • 程序执行流程
      • linking
        • 程序链接
        • Symbol Reslove
      • structure
        • ELF 文件
        • Code Section
        • Data Related Sections
        • Dynamic Sections
        • Misc Sections
        • Sections
        • String Sections
        • .symtab: Symbol Table
    • pe
      • PE 文件格式
      • 导出表
      • 导入表
      • 基址重定位表
  • ics
    • ICS_CTF 竞赛
    • ICS_CTF 发现
    • ICS_CTF 利用
    • ICS_CTF 学习资源
  • contribute
    • 贡献之前
    • 基本贡献方式
    • 贡献文档要求
    • 翻译
  • write up
    • 浙江工业大学CTF赛事
      • 2023第四届“安恒杯”CTF新生赛题解
Powered by GitBook
On this page
  • 原理
  • slot 计算规则
  • 漏洞介绍
  • 例子
  • Source
  • Analyse
  • 题目
  • XCTF_final 2019
  • Balsn 2019
  • 第一届钓鱼城杯 2020
  • RCTF 2020
  1. blockchain
  2. ethereum
  3. attacks

Arbitrary Writing

PreviousAirdrop HuntingNextCREATE2

Last updated 1 year ago

原理

动态数组的任意 Storage 存储写漏洞,根据 介绍,可总结如下

  • EVM 中,有三个地方可以存储变量,分别是 Memory、Stack 和 Storage。Memory 和 Stack 是在执行期间临时生成的存储空间,主要负责运行时的数据存储,Storage 是永久存在于区块链中的变量。

    • Memory: 内存,生命周期仅为整个方法执行期间,函数调用后回收,因为仅保存临时变量,故 GAS 开销很小

    • Storage: 永久储存在区块链中,由于会永久保存合约状态变量,故 GAS 开销也最大

    • Stack: 存放部分局部值类型变量,几乎免费使用的内存,但有数量限制

  • EVM 对每一个智能合约维护了一个巨大的 key-value 的存储结构,用于持久化存储数据,我们称这片区域为 Storage。除了 map 映射变量和变长数组以外的所有类型变量,在 Storage 中是依次连续从 slot 0 开始排列的,一共有 2^256 个 slot,每个 slot 可以存储 32 字节的数据。Storage 存储结构是在合约创建的时候就确定好的,它取决于合约所声明状态变量,但是内容可以通过 Transaction 改变。

  • Storage 变量大致分为 4 种类型:定长变量、结构体、map 映射变量和变长数组。如果多个变量占用的大小小于 32 字节,按照紧密打包原则,会尽可能打包到单个 slot 中,具体规则如下:

    • 在 slot 中,是按照低位对齐存储的,即大端序

    • 基本类型变量存储时仅存储它们实际所需的字节数

    • 如果基本类型变量不能放入某个 slot 余下的空间,它将被放入下一个 slot

    • map 和变长数组总是使用一个全新的 slot,并占用整个 slot,但对于其内部的每个变量,还是要遵从上面的规则

slot 计算规则

首先我们分析一下各种对象结构在 EVM 中的存储和访问情况

定长变量和结构体

Solidity 中的定长定量在定义的时候,其长度就已经被限制住了。比如定长整型(uint、uint8),地址常量(address),定长字节数组(bytes1-32)等,这类的变量在 Storage 中是尽可能打包成 32 字节的块顺序存储的。

Solidity 的结构体并没有特殊的存储模型,在 Storage 中的存储可以按照定长变量规则分析。

Map 映射变量

在 Solidity 中,并不存储 map 的键,只存储键对应的值,值是通过键的 hash 索引来找到的。用 $slotM$ 表示 map 声明的 slot 位置,用 $key$ 表示键,用 $value$ 表示 $key$ 对应的值,用 $slotV$ 表示 $value$ 的存储位置,则

  • $slotV = keccak256(key|slotM)$

  • $value = sload(slotV)$

变长数组

用 $slotA$ 表示变长数组声明的位置,用 $length$ 表示变长数组的长度,用 $slotV$ 表示变长数组数据存储的位置,用 $value$ 表示变长数组某个数据的值,用 $index$ 表示 $value$ 对应的索引下标,则

  • $length = sload(slotA)$

  • $slotV = keccak256(slotA) + index$

  • $value = sload(slotV)$

变长数组在编译期间无法知道数组的长度,没办法提前预留存储空间,所以 Solidity 就用 $slotA$ 位置存储了变长数组的长度

!!! note 注:变长数组具体数据存放在 keccak256 哈希计算之后的一片连续存储区域,这一点与 Map 映射变量不同。

漏洞介绍

在以太坊 EVM 的设计思路中,所有的 Storage 变量共用一片大小为 2^256*32 字节的存储空间,没有各自的存储区域划分。

Storage 空间即使很大也是有限大小,当变长数组长度很大时,考虑极端情况,如果长度达到 2^256,则可对任意 Storage 变量进行读写操作,这是非常可怕的。

例子

Source

pragma solidity ^0.4.24;

contract ArrayTest  {

    address public owner;
    bool public contact;
    bytes32[] public codex;
    
    constructor() public {
        owner = msg.sender;
    }

    function record(bytes32 _content) public {
        codex.push(_content);
    }

    function retract() public {
        codex.length--;
    }

    function revise(uint i, bytes32 _content) public {
        codex[i] = _content;
    }
}

这里攻击者如何才能成为 owner 呢?其中 owner 最初为 0x73048cec9010e92c298b016966bde1cc47299df5

Analyse

  • 数组 codex 的 slot 为 1 ,同时这也是存储数组 length 的地方,而 codex 的实际内容存储在 keccak256(bytes32(1)) 开始的位置

!!! info Keccak256 是紧密打包的,意思是说参数不会补位,多个参数也会直接连接在一起,所以要用 keccak256(bytes32(1))

  • 这样我们就知道了 codex 实际的存储的 slot ,可以将动态数组内变量的存储位计算方法概括为: array[index] == sload(keccak256(slot(array)) + index).

  • 因为总共有 2^256 个 slot ,要修改 slot 0 ,假设 codex 实际所在 slot x ,(对于本题来说,数组的 slot是 1 , x=keccak256(bytes32(1))) ,那么当我们修改 codex[y],(y=2^256-x+0) 时就能修改 slot 0 ,从而修改 owner

    • 计算 codex 位置为 slot 0xb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6

    • 所以 y = 2^256 - 0xb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6 + 0

    • 即 y = 35707666377435648211887908874984608119992236509074197713628505308453184860938

  • 可以看到 y 很大,我们要修改 codex[y] ,那就要满足 y < codex.length ,而这个时候 codex.length =0 ,但是我们可以通过 retract() 使 length 下溢,然后就可以操纵 codex[y] 了

  • 由上面已经计算出 codex[35707666377435648211887908874984608119992236509074197713628505308453184860938] 对应的存储位就是 slot 0 ,而 slot 0 中同时存储了 contact 和 owner ,我们只需将 owner 换成 attacker 即可,假设 attacker 地址是 0x88d3052d12527f1fbe3a6e1444ea72c4ddb396c2,则如下所示

contract.revise('35707666377435648211887908874984608119992236509074197713628505308453184860938','0x00000000000000000000000088d3052d12527f1fbe3a6e1444ea72c4ddb396c2')

题目

XCTF_final 2019

  • 题目名称 Happy_DOuble_Eleven

Balsn 2019

  • 题目名称 Bank

第一届钓鱼城杯 2020

  • 题目名称 StrictMathematician

RCTF 2020

  • 题目名称 roiscoin

!!! note 注:题目附件相关内容可至 仓库寻找。

官方文档
ctf-challenges/blockchain