CTF Wiki
  • 简介
  • 如何使用 CTF Wiki
  • introduction
    • CTF 历史
    • CTF 竞赛模式简介
    • CTF 竞赛内容
    • 线下攻防经验小结
    • CGC 超级挑战赛
    • 学习资源
  • misc
    • 杂项简介
    • 取证隐写前置技术
    • 信息搜集技术
    • encode
      • 通信领域常用编码
      • 计算机相关的编码
      • 现实世界中常用的编码
    • picture
      • 图片分析简介
      • JPG
      • PNG
      • GIF
    • audio
      • 音频隐写
    • archive
      • RAR 格式
      • ZIP 格式
    • traffic
      • 流量包分析简介
      • 协议分析概述
        • Wireshark
        • DNS
        • HTTP
        • HTTPS
        • FTP
        • USB
        • WIFI
      • 数据提取
      • PCAP 文件修复
    • disk-memory
      • 磁盘内存分析
      • 题目
    • shellcode
    • other
      • pyc
  • web
    • Web 简介
    • XSS
    • php
      • PHP 代码审计
    • SQL 注入
      • sqlmap绕过脚本
      • 各版本数据库语句备忘
    • CSRF
    • SSRF
  • reverse
    • 软件逆向工程简介
    • identify-encode-encryption
      • 常见加密算法和编码识别
    • language
      • 简介
      • go
        • Golang 逆向入门
      • python
        • Python 逆向入门
      • rust
        • Rust 逆向入门
    • maze
      • 迷宫问题
    • obfuscate
      • 控制流平坦化
      • 花指令
      • movofuscator
      • Self-Modified Code
    • vm
      • 虚拟机分析
    • platform
      • linux
        • Detecting Breakpoints
        • Detecting debugging
        • False Disassembly
        • LD_PRELOAD
      • windows
        • anti-debug
          • CheckRemoteDebuggerPresent
          • 反调试技术例题
          • Heap Flags
          • Interrupt 3
          • IsDebuggerPresent
          • 花指令
          • NtGlobalFlag
          • NtQueryInformationProcess
          • The Heap
          • Thread Local Storage(TLS)
          • ZwSetInformationThread
        • unpack
          • 一步到达 OEP 法
          • ESP 定律法
          • DUMP 及 IAT 重建
          • 最后一次异常法
          • 手动查找 IAT 并使用 ImportREC 重建
          • 内存镜像法
          • 保护壳简介
          • SFX 法
          • 单步跟踪法
          • DLL 文件脱壳
    • tools
      • constraint
        • z3
      • debug
        • gdb
        • ollydbg
        • windbg
        • x64dbg/x32dbg
      • simulate-execution
        • angr
        • Unicorn Engine
      • static-analyze
        • dnspy
        • Ghidra
        • IDA Pro
        • jadx
  • crypto
    • 密码学简介
    • asymmetric
      • 介绍
      • discrete-log
        • 离散对数
        • ECC
        • ElGamal
      • knapsack
        • 背包加密
      • lattice
        • CVP
        • 基本介绍
        • 格基规约算法
        • 格概述
      • rsa
        • RSA 选择明密文攻击
        • RSA 复杂题目
        • Coppersmith 相关攻击
        • 公钥指数相关攻击
        • 模数相关攻击
        • Bleichenbacher's attack
        • RSA 侧信道攻击
        • RSA 介绍
        • d_attacks
          • 私钥 d 相关攻击
          • 扩展维纳攻击
    • attack-summary
      • 简介
      • 比特攻击
      • 中间相遇攻击 - MITM
    • basic
      • 基础数学知识
    • blockcipher
      • AES
      • ARX: Add-Rotate-Xor
      • DES
      • IDEA
      • 块加密
      • Simon and Speck Block Ciphers
      • mode
        • CBC
        • CFB
        • CTR
        • ECB
        • 分组模式
        • OFB
        • Padding Oracle Attack
        • 填充方式
        • PCBC
    • certificate
      • 证书格式
    • classical
      • 古典密码简介
      • 单表代换加密
      • 其它类型加密
      • 多表代换加密
      • 总结
    • hash
      • Hash Attack
      • 综合题目
      • Fowler–Noll–Vo hash function
      • 哈希函数
      • MD5
      • SHA1
    • signature
      • DSA
      • ElGamal
      • 数字签名
      • RSA 数字签名
    • streamcipher
      • 流密码
      • fsr
        • 反馈移位寄存器
        • 线性反馈移位寄存器 - LFSR
        • 非线性反馈移位寄存器
      • lcg
        • 题目
        • 线性同余生成器
      • prng
        • 密码安全伪随机数生成器
        • 伪随机数生成器介绍
        • 题目
      • special
        • RC4
  • pwn
    • MacOS
    • misc-os
    • 概述
      • stackoverflow
        • 执行 Shellcode
        • 栈介绍
        • 栈溢出原理
    • browser
      • Chrome
      • Firefox
      • Safari
    • hardware
      • 简介
        • side-channel
          • prefetch side-channel attack
      • trusted-computing
        • 可信执行环境
    • linux
      • kernel-mode
        • 基础知识
        • Introduction
          • DoS
          • Information Disclosure
          • Introduction
            • Change Others
            • Change Self
        • Introduction
          • Introduction
            • 信息泄漏
            • Misc
          • Introduction
            • Kernel Stack Canary
          • Introduction
            • inner-kernel
              • 内部隔离
            • Introduction
              • KPTI - Kernel Page Table Isolation
              • 用户代码不可执行
              • 用户数据不可访问
          • Introduction
            • FGKASLR
            • KASLR
        • Introduction
          • 编译内核驱动
          • 内核下载与编译
          • Qemu 模拟环境
          • Real Device
        • exploitation
          • heap
            • 内核堆概述
            • buddy
              • Cross-Cache Overflow & Page-level Heap Fengshui
              • Page-level UAF
            • slub
              • freelist 劫持
              • Heap Spray
              • kernel UAF
          • race
            • Double Fetch
            • userfaultfd 的使用
          • rop
            • bypass-smep
            • ret2dir
            • 利用 pt_regs 构造通用内核 ROP
            • ret2usr(已过时)
            • Kernel ROP
          • tricks
            • 在内存中直接搜索 flag
      • user-mode
        • environment
        • fmtstr
          • 检测
          • 例子
          • 利用
          • 原理介绍
        • integeroverflow
          • 整数溢出
        • io-file
          • glibc 2.24下 IO_FILE 的利用
          • 伪造vtable劫持程序流程
          • FSOP
          • FILE结构
        • mitigation
          • Canary
        • race-condition
          • introduction
          • 题目
        • summary
          • 获取地址
          • shell 获取小结
          • 控制程序执行流
        • Type Confusion
        • Uninitialized Memory
        • heap
          • mallocng
          • ptmalloc2
            • Chunk Extend and Overlapping
            • Fastbin Attack
            • 堆概述
            • 堆相关数据结构
            • 堆溢出
            • House Of Einherjar
            • House Of Force
            • House of Lore
            • House of Orange
            • House of Pig
            • House of Rabbit
            • House of Roman
            • 堆利用
            • Large Bin Attack
            • 通过堆进行信息泄漏
            • 堆中的 Off-By-One
            • 堆中的检查
            • tcache makes heap exploitation easy again
            • Unlink
            • Unsorted Bin Attack
            • Use After Free
            • implementation
              • 基础操作
              • 释放内存块
              • 堆初始化
              • malloc_state 相关函数
              • 申请内存块
              • 测试支持
              • 深入理解堆的实现
              • tcache
        • stackoverflow
          • arm
            • 环境搭建
            • Arm ROP
          • mips
            • mips - ROP
          • RISC-V
          • x86
            • 基本 ROP
            • 花式栈溢出技巧
            • 中级ROP
            • 栈介绍
            • 栈溢出原理
            • advanced-rop
              • 高级 ROP
              • ret2dlresolve
              • ret2VDSO
              • SROP
    • sandbox
      • Chroot
      • Docker
      • Namespace
      • python
        • Python 沙盒
      • seccomp
        • C 沙盒逃逸
      • Shell Sandbox
    • virtualization
      • basic-knowledge
        • 虚拟化技术简介
        • CPU 虚拟化
        • IO 虚拟化
        • 内存虚拟化
      • parallels
        • Parallels
      • VirtualBox
      • VMWare
      • qemu
        • basic-knowledge
          • QEMU 设备模拟
          • QEMU 内存管理
        • environment
          • 编写 QEMU 模拟设备
          • QEMU 下载与编译
        • exploitation
          • QEMU 逃逸入门
          • 越界读写
  • Android 安全
    • basic_develop
      • Android 开发基础
    • Android 应用运行机制简述
      • Android 中 Java 层的运行机制
        • dex
          • DEX文件
          • ODEX文件
        • smali
          • Smali
      • native_layer
        • so 介绍
    • basic_reverse
      • Android 关键代码定位
      • Android 逆向基本介绍
      • dynamic
        • Android 动态调试
        • IDA 动态调试原生层程序
        • IDA 动态调试 smali 代码
      • static
        • 静态分析综合题目
        • 静态分析 java 层例子
        • 静态分析原生层程序
  • blockchain
    • Blockchain Security Challenges
    • Blockchain Security Overview
    • ethereum
      • Ethereum Basics
      • Ethereum Overview
      • Ethereum Opcodes
      • 学习资源
      • Smart Contract Reverse
      • Function Selector and Argument Encoding
      • Ethereum Storage
      • attacks
        • Airdrop Hunting
        • Arbitrary Writing
        • CREATE2
        • Delegatecall
        • Introduction
        • Jump Oriented Programming
        • Integer Overflow and Underflow
        • Randomness
        • Re-Entrancy
        • Short Address Attack
        • Uninitialized Storage Pointer
    • publicblockchain
      • Public Blockchain Security Overview
      • Blockchain Weaknesses
  • assembly
    • ARM
    • MIPS
    • x86_x64
  • executable
    • elf
      • 程序加载
      • 程序执行流程
      • linking
        • 程序链接
        • Symbol Reslove
      • structure
        • ELF 文件
        • Code Section
        • Data Related Sections
        • Dynamic Sections
        • Misc Sections
        • Sections
        • String Sections
        • .symtab: Symbol Table
    • pe
      • PE 文件格式
      • 导出表
      • 导入表
      • 基址重定位表
  • ics
    • ICS_CTF 竞赛
    • ICS_CTF 发现
    • ICS_CTF 利用
    • ICS_CTF 学习资源
  • contribute
    • 贡献之前
    • 基本贡献方式
    • 贡献文档要求
    • 翻译
  • write up
    • 浙江工业大学CTF赛事
      • 2023第四届“安恒杯”CTF新生赛题解
Powered by GitBook
On this page
  • 小公钥指数攻击
  • 攻击条件
  • 攻击原理
  • 范例
  • 题目
  • RSA 衍生算法——Rabin 算法
  • 攻击条件
  • 攻击原理
  • 例子
  • 题目
  1. crypto
  2. asymmetric
  3. rsa

公钥指数相关攻击

PreviousCoppersmith 相关攻击Next模数相关攻击

Last updated 1 year ago

小公钥指数攻击

攻击条件

e 特别小,比如 e 为 3。

攻击原理

假设用户使用的密钥 $e=3$。考虑到加密关系满足:

c≡m3 mod Nc\equiv m^3 \bmod Nc≡m3modN

则:

m3=c+k×Nm=c+k×n3\begin{align*} m^3 &= c+k\times N\\ m &= \sqrt[3]{c+k\times n} \end{align*}m3m​=c+k×N=3c+k×n​​

攻击者可以从小到大枚举 $k$,依次开三次根,直到开出整数为止。

范例

这里我们以 XMan 一期夏令营课堂练习为例进行介绍(Jarvis OJ 有复现),附件中有一个 flag.enc 和 pubkey.pem,很明显是密文和公钥了,先用 openssl 读一下公钥。

➜  Jarvis OJ-Extremely hard RSA git:(master) ✗ openssl rsa -pubin -in pubkey.pem -text -modulus       
Public-Key: (4096 bit)
Modulus:
    00:b0:be:e5:e3:e9:e5:a7:e8:d0:0b:49:33:55:c6:
    18:fc:8c:7d:7d:03:b8:2e:40:99:51:c1:82:f3:98:
    de:e3:10:45:80:e7:ba:70:d3:83:ae:53:11:47:56:
    56:e8:a9:64:d3:80:cb:15:7f:48:c9:51:ad:fa:65:
    db:0b:12:2c:a4:0e:42:fa:70:91:89:b7:19:a4:f0:
    d7:46:e2:f6:06:9b:af:11:ce:bd:65:0f:14:b9:3c:
    97:73:52:fd:13:b1:ee:a6:d6:e1:da:77:55:02:ab:
    ff:89:d3:a8:b3:61:5f:d0:db:49:b8:8a:97:6b:c2:
    05:68:48:92:84:e1:81:f6:f1:1e:27:08:91:c8:ef:
    80:01:7b:ad:23:8e:36:30:39:a4:58:47:0f:17:49:
    10:1b:c2:99:49:d3:a4:f4:03:8d:46:39:38:85:15:
    79:c7:52:5a:69:98:4f:15:b5:66:7f:34:20:9b:70:
    eb:26:11:36:94:7f:a1:23:e5:49:df:ff:00:60:18:
    83:af:d9:36:fe:41:1e:00:6e:4e:93:d1:a0:0b:0f:
    ea:54:1b:bf:c8:c5:18:6c:b6:22:05:03:a9:4b:24:
    13:11:0d:64:0c:77:ea:54:ba:32:20:fc:8f:4c:c6:
    ce:77:15:1e:29:b3:e0:65:78:c4:78:bd:1b:eb:e0:
    45:89:ef:9a:19:7f:6f:80:6d:b8:b3:ec:d8:26:ca:
    d2:4f:53:24:cc:de:c6:e8:fe:ad:2c:21:50:06:86:
    02:c8:dc:dc:59:40:2c:ca:c9:42:4b:79:00:48:cc:
    dd:93:27:06:80:95:ef:a0:10:b7:f1:96:c7:4b:a8:
    c3:7b:12:8f:9e:14:11:75:16:33:f7:8b:7b:9e:56:
    f7:1f:77:a1:b4:da:ad:3f:c5:4b:5e:7e:f9:35:d9:
    a7:2f:b1:76:75:97:65:52:2b:4b:bc:02:e3:14:d5:
    c0:6b:64:d5:05:4b:7b:09:6c:60:12:36:e6:cc:f4:
    5b:5e:61:1c:80:5d:33:5d:ba:b0:c3:5d:22:6c:c2:
    08:d8:ce:47:36:ba:39:a0:35:44:26:fa:e0:06:c7:
    fe:52:d5:26:7d:cf:b9:c3:88:4f:51:fd:df:df:4a:
    97:94:bc:fe:0e:15:57:11:37:49:e6:c8:ef:42:1d:
    ba:26:3a:ff:68:73:9c:e0:0e:d8:0f:d0:02:2e:f9:
    2d:34:88:f7:6d:eb:62:bd:ef:7b:ea:60:26:f2:2a:
    1d:25:aa:2a:92:d1:24:41:4a:80:21:fe:0c:17:4b:
    98:03:e6:bb:5f:ad:75:e1:86:a9:46:a1:72:80:77:
    0f:12:43:f4:38:74:46:cc:ce:b2:22:2a:96:5c:c3:
    0b:39:29
Exponent: 3 (0x3)
Modulus=B0BEE5E3E9E5A7E8D00B493355C618FC8C7D7D03B82E409951C182F398DEE3104580E7BA70D383AE5311475656E8A964D380CB157F48C951ADFA65DB0B122CA40E42FA709189B719A4F0D746E2F6069BAF11CEBD650F14B93C977352FD13B1EEA6D6E1DA775502ABFF89D3A8B3615FD0DB49B88A976BC20568489284E181F6F11E270891C8EF80017BAD238E363039A458470F1749101BC29949D3A4F4038D463938851579C7525A69984F15B5667F34209B70EB261136947FA123E549DFFF00601883AFD936FE411E006E4E93D1A00B0FEA541BBFC8C5186CB6220503A94B2413110D640C77EA54BA3220FC8F4CC6CE77151E29B3E06578C478BD1BEBE04589EF9A197F6F806DB8B3ECD826CAD24F5324CCDEC6E8FEAD2C2150068602C8DCDC59402CCAC9424B790048CCDD9327068095EFA010B7F196C74BA8C37B128F9E1411751633F78B7B9E56F71F77A1B4DAAD3FC54B5E7EF935D9A72FB176759765522B4BBC02E314D5C06B64D5054B7B096C601236E6CCF45B5E611C805D335DBAB0C35D226CC208D8CE4736BA39A0354426FAE006C7FE52D5267DCFB9C3884F51FDDFDF4A9794BCFE0E1557113749E6C8EF421DBA263AFF68739CE00ED80FD0022EF92D3488F76DEB62BDEF7BEA6026F22A1D25AA2A92D124414A8021FE0C174B9803E6BB5FAD75E186A946A17280770F1243F4387446CCCEB2222A965CC30B3929
writing RSA key
-----BEGIN PUBLIC KEY-----
MIICIDANBgkqhkiG9w0BAQEFAAOCAg0AMIICCAKCAgEAsL7l4+nlp+jQC0kzVcYY
/Ix9fQO4LkCZUcGC85je4xBFgOe6cNODrlMRR1ZW6Klk04DLFX9IyVGt+mXbCxIs
pA5C+nCRibcZpPDXRuL2BpuvEc69ZQ8UuTyXc1L9E7Huptbh2ndVAqv/idOos2Ff
0NtJuIqXa8IFaEiShOGB9vEeJwiRyO+AAXutI442MDmkWEcPF0kQG8KZSdOk9AON
Rjk4hRV5x1JaaZhPFbVmfzQgm3DrJhE2lH+hI+VJ3/8AYBiDr9k2/kEeAG5Ok9Gg
Cw/qVBu/yMUYbLYiBQOpSyQTEQ1kDHfqVLoyIPyPTMbOdxUeKbPgZXjEeL0b6+BF
ie+aGX9vgG24s+zYJsrST1MkzN7G6P6tLCFQBoYCyNzcWUAsyslCS3kASMzdkycG
gJXvoBC38ZbHS6jDexKPnhQRdRYz94t7nlb3H3ehtNqtP8VLXn75NdmnL7F2dZdl
UitLvALjFNXAa2TVBUt7CWxgEjbmzPRbXmEcgF0zXbqww10ibMII2M5HNro5oDVE
JvrgBsf+UtUmfc+5w4hPUf3f30qXlLz+DhVXETdJ5sjvQh26Jjr/aHOc4A7YD9AC
LvktNIj3betive976mAm8iodJaoqktEkQUqAIf4MF0uYA+a7X6114YapRqFygHcP
EkP0OHRGzM6yIiqWXMMLOSkCAQM=
-----END PUBLIC KEY-----

看到 $e=3$,很明显是小公钥指数攻击了。这里我们使用 Crypto 库来读取公钥,使用 multiprocessing 来加快破解速度。

#/usr/bin/python
# coding=utf-8
import gmpy2
from Crypto.PublicKey import RSA
from multiprocessing import Pool
pool = Pool(4)

with open('./pubkey.pem', 'r') as f:
    key = RSA.importKey(f)
    N = key.n
    e = key.e
with open('flag.enc', 'r') as f:
    cipher = f.read().encode('hex')
    cipher = int(cipher, 16)


def calc(j):
    print j
    a, b = gmpy2.iroot(cipher + j * N, 3)
    if b == 1:
        m = a
        print '{:x}'.format(int(m)).decode('hex')
        pool.terminate()
        exit()


def SmallE():
    inputs = range(0, 130000000)
    pool.map(calc, inputs)
    pool.close()
    pool.join()


if __name__ == '__main__':
    print 'start'
    SmallE()

爆破时间有点长,,拿到 flag

Didn't you know RSA padding is really important? Now you see a non-padding message is so dangerous. And you should notice this in future.Fl4g: flag{Sm4ll_3xpon3nt_i5_W3ak}

题目

RSA 衍生算法——Rabin 算法

攻击条件

Rabin 算法的特征在于 $e=2$。

攻击原理

密文:

解密:

  • 计算出 $m_p$ 和 $m_q$:

  • 用扩展欧几里得计算出 $y_p$ 和 $y_q$:

  • 解出四个明文:

注意:如果 $p \equiv q \equiv 3 \pmod 4$,则

而一般情况下,$p \equiv q \equiv 3 \pmod 4$ 是满足的,对于不满足的情况下,请参考相应的算法解决。

例子

这里我们以 XMan 一期夏令营课堂练习(Jarvis OJ 有复现)为例,读一下公钥。

➜  Jarvis OJ-hard RSA git:(master) ✗ openssl rsa -pubin -in pubkey.pem -text -modulus 
Public-Key: (256 bit)
Modulus:
    00:c2:63:6a:e5:c3:d8:e4:3f:fb:97:ab:09:02:8f:
    1a:ac:6c:0b:f6:cd:3d:70:eb:ca:28:1b:ff:e9:7f:
    be:30:dd
Exponent: 2 (0x2)
Modulus=C2636AE5C3D8E43FFB97AB09028F1AAC6C0BF6CD3D70EBCA281BFFE97FBE30DD
writing RSA key
-----BEGIN PUBLIC KEY-----
MDowDQYJKoZIhvcNAQEBBQADKQAwJgIhAMJjauXD2OQ/+5erCQKPGqxsC/bNPXDr
yigb/+l/vjDdAgEC
-----END PUBLIC KEY-----

$e=2$,考虑 Rabin 算法。首先我们先分解一下 p 和 q,得到

p=275127860351348928173285174381581152299
q=319576316814478949870590164193048041239

编写代码

#!/usr/bin/python
# coding=utf-8
import gmpy2
import string
from Crypto.PublicKey import RSA

# 读取公钥参数
with open('pubkey.pem', 'r') as f:
    key = RSA.importKey(f)
    N = key.n
    e = key.e
with open('flag.enc', 'r') as f:
    cipher = f.read().encode('hex')
    cipher = string.atoi(cipher, base=16)
    # print cipher
print "please input p"
p = int(raw_input(), 10)
print 'please input q'
q = int(raw_input(), 10)
# 计算yp和yq
inv_p = gmpy2.invert(p, q)
inv_q = gmpy2.invert(q, p)

# 计算mp和mq
mp = pow(cipher, (p + 1) / 4, p)
mq = pow(cipher, (q + 1) / 4, q)

# 计算a,b,c,d
a = (inv_p * p * mq + inv_q * q * mp) % N
b = N - int(a)
c = (inv_p * p * mq - inv_q * q * mp) % N
d = N - int(c)

for i in (a, b, c, d):
    s = '%x' % i
    if len(s) % 2 != 0:
        s = '0' + s
    print s.decode('hex')

拿到 flag,PCTF{sp3ci4l_rsa}。

题目

c=m2 mod nc = m^2\bmod nc=m2modn
mp=c mod pmq=c mod q\begin{align*} m_p &= \sqrt{c} \bmod p\\ m_q &= \sqrt{c} \bmod q \end{align*}mp​mq​​=c​modp=c​modq​
yp⋅p+yq⋅q=1y_p \cdot p + y_q \cdot q = 1yp​⋅p+yq​⋅q=1
a=(yp⋅p⋅mq+yq⋅q⋅mp) mod nb=n−ac=(yp⋅p⋅mq−yq⋅q⋅mp) mod nd=n−c\begin{align*} a &= (y_p \cdot p \cdot m_q + y_q \cdot q \cdot m_p) \bmod n\\ b &= n - a\\ c &= (y_p \cdot p \cdot m_q - y_q \cdot q \cdot m_p) \bmod n\\ d &= n - c \end{align*}abcd​=(yp​⋅p⋅mq​+yq​⋅q⋅mp​)modn=n−a=(yp​⋅p⋅mq​−yq​⋅q⋅mp​)modn=n−c​
mp=c14(p+1) mod pmq=c14(q+1) mod q\begin{align*} m_p &= c^{\frac{1}{4}(p + 1)} \bmod p\\ m_q &= c^{\frac{1}{4}(q + 1)} \bmod q \end{align*}mp​mq​​=c41​(p+1)modp=c41​(q+1)modq​